

RULES FOR BUILDING AND CLASSING

STEEL VESSELS 2009

PART 6 OPTIONAL ITEMS AND SYSTEMS

American Bureau of Shipping Incorporated by Act of Legislature of the State of New York 1862

Copyright © 2008 American Bureau of Shipping ABS Plaza 16855 Northchase Drive Houston, TX 77060 USA This Page Intentionally Left Blank

6

Optional Items and Systems

CONTENTS

CHAPTER 1	Strengthenir	ng for Navigation in Ice1
	Section 1	General Ice Classes9
	Section 2	Baltic Ice Classes53
CHAPTER 2	Vessels Inter	nded to Carry Refrigerated Cargoes77
	Section 1	General85
	Section 2	Plans and Data to be Submitted93
	Section 3	Hull Construction101
	Section 4	Cargo Handling Equipment107
	Section 5	Refrigerated Cargo Spaces119
	Section 6	Refrigeration Machinery129
	Section 7	Ancillary Systems145
	Section 8	Fire Extinguishing Systems and Equipment147
	Section 9	Electrical Systems149
	Section 10	Instrumentation, Control and Monitoring153
	Section 11	Ammonia Refrigeration System161
	Section 12	Controlled Atmosphere Systems171
	Section 13	Refrigerated Cargo Container Carrier187
	Section 14	Refrigerated Edible Bulk Liquid Tanker
	Section 15	Refrigerated Fish Carrier197
	Section 16	Testing201

This Page Intentionally Left Blank

PART

6

CHAPTER 1 Strengthening for Navigation in Ice

CONTENTS

SECTION 1	Gene	ral Ice (Classes	9
	1	Genera	al	9
		1.1	Application	9
		1.3	Polar Ice Classes	9
		1.5	Ice Breaker Class	9
	3	Selecti	on of Ice Class	10
		3.1	Ice Class	10
		3.3	Guide for Selection	10
	5	Definiti	ons	12
		5.1	Ice Belt	12
		5.3	Upper Ice Waterline	12
		5.5	Lower Ice Waterline	12
		5.7	Displacement	12
		5.9	Length	12
	7	Extent	and Length of Ice Belt Areas	12
	9	Desigr	Ice Loads	15
		9.1	Design Ice Pressure on the Bow Area	15
		9.3	Design Ice Pressures on Other Ice Belt Areas	16
		9.5	Extent of Design Ice Load	19
	11	Longitu	udinal Strength	20
	13	Shell F	Plating	20
		13.1	Ice Belt with Transverse Framing	20
		13.3	Ice Belt with Longitudinal Framing	21
		13.5	Bottom Plating	21
		13.7	Changes in Plating Thickness	21
	15	Transv	erse Framing	22
		15.1	Definitions	22
		15.3	Ice Belt Frame Spacing	22
		15.5	Main and Intermediate Frames	22
		15.7	Web Frames	24
		15.9	Ice Stringers	25

17	Longit	udinal Framing	
	17.1	General	28
	17.3	Spacing of Longitudinals	28
	17.5	Section Modulus	28
	17.7	Web Frames	28
	17.9	Struts	29
19	Alterna	ative Framing Arrangements	29
21	Peak I	Frames	30
23	Double	e Bottom	30
	23.1	Inner Bottom	30
	23.3	Transversely Framed Bottom	
	23.5	Longitudinally Framed Bottom	30
25	Ice De	ecks	
	25.1	General	31
	25.3	Deck Plating	31
	25.5	Deck Transverses and Deck Beams	31
	25.7	Decks with Wide Openings	
27	Bulkhe	eads	
	27.1	General	
	27.3	Scantlings	
29	Stem a	and Stern Frame	
	29.1	General	33
	29.3	Stem	
	29.5	Stern Frame	34
31	Power	of Propulsion Machinery	
	31.1	Minimum Power	35
	31.3	Astern Power	36
33	Non-s	elf-propelled Vessels	36
	33.1	General	
	33.3	Ice Classes	
	33.5	Ice Belt	37
	33.7	Design Ice Loads	37
	33.9	Structural Arrangements	37
35	Hull St	tructural Materials	
	35.1	General	
	35.3	Design Service Temperature	
	35.5	Material Class of Structural Members	
	35.7	Criteria for ABS Grade Steels	39
	35.9	Criteria for Other Steels	40
	35.11	Weld Metal	41
	35.13	Inspection	41
37	Weld I	Design	
39		g Arrangements	
	39.1	Bow	
	39.3	Stern	
	-		

41	Prop	eller Nozzles	42
	41.1	General	42
	41.3	Design Ice Forces	42
	41.5	Plate Thickness	43
43	Rudo	ler and Steering Arrangements	44
	43.1	General	44
	43.3	Rudder Stocks, Couplings and Pintles	44
	43.5	Double Plate Rudder	45
45	Boss	ings	45
47	Mach	ninery Arrangements	45
	47.1	General	45
	47.3	Governmental Authority	45
	47.5	Propulsion Arrangements	45
	47.7	Electric Propulsion	45
	47.9	Boilers	46
	47.11	Protection Against Excessive Torques	46
	47.13	Vibration Analysis	46
	47.15		
	47.17	g	
	47.19		
49	Mate	rials for Propellers and Propulsion Shafting	47
51	Dete	rmination of Ice Torque for Propulsion Systems	47
53	Prop	ellers	47
	53.1	Propeller Arrangements	47
	53.3	Propeller Section	49
	53.5	Additional Requirements	51
	53.7	Friction Fitting of Propeller Hubs and Shaft Couplings	51
55	Prop	ulsion Shafting Diameters	51
57	Redu	iction Gears	52
59	Flexi	ble Couplings	52
TABLE	E 1	Regions and Periods for Navigation in Ice for	10
	- 0	Selecting Ice Class	10
TABLE	: 2	Ice Conditions of First-Year Ice Versus Concentration and Thickness of Ice Cover	11
TABLE	: 3	Dimensions of Ice Belt Areas	
TABLE		Bow Area Ice Pressure Coefficients	
TABLE		Ice Pressure Coefficients in Other Areas	
TABLE		Extent of Ice Load Coefficients	
			19
TABLE	- /	Minimum Thickness and Abrasion Allowance of Ice Belt Plating	20
TABLE	8	Coefficient K.	21
TABLE	9a	Coefficient K_1 for the Framing System without	~~
T · F · -		Webs and Supporting Stringers	
TABLE		Distance	
TABLE	E 10	Maximum Stringer Spacing	27

	TABLE	11	Minimum Width of Reinforced Bulkhead Plating	33
	TABLE	12	Solid Stem Bar Coefficients	34
	TABLE	13	Stern Post Coefficient	35
	TABLE	14	Power Coefficients	36
	TABLE	15	Design Service Temperature	38
	TABLE	16	Material Class of Structural Members	39
	TABLE	17a	Material Grades – Class I	39
	TABLE	17b	Material Grades – Class II	40
	TABLE	17c	Material Grade – Class III	40
	TABLE	18	Design Ice Force Coefficient	43
	TABLE	19	Design Speed for Rudders, Couplings and Pintles	44
	TABLE	20	Value of Ice Torque M	48
	TABLE	21	Values of <i>m</i> and <i>k</i>	
	TABLE	22	Propulsion Shaft Diameter Factor <i>k</i> ₁	52
	FIGUR	E 1	Ice Belt Areas	13
	FIGUR	E 1a	Ice Class A5 through A1	13
	FIGUR	E 1b	Ice Class A0 through C0	14
	FIGUR	E 1c	Ice Class D0	14
	FIGUR	E 1d	Definition of <i>F</i>	15
	FIGUR	E 2	Coefficients F_{b1} Versus angles α_b and β_b	18
	FIGUR	E 3	Coefficients F_i Versus Angles α_i and β_i	18
	FIGUR	E 4	Upper End Terminations of Frames	
	FIGUR	E 5	Lower End Terminations of Frames	27
2	Baltic	Ice C	lasses	53
	1	Gene	eral	53
		1.1	Application	53
		1.3	Northern Baltic Waters	53
	3	Assig	nment of Ice Class	53
		3.1	Ice Class	53
		3.3	General Suitability for Operating in Ice	54
		3.5	General Suitability for Winter Conditions	54
	5	Defin	itions	54
		5.1	Ice Belt	
		5.3	Maximum Ice Class Draft Amidships	
		5.5	Load Waterline	
		5.7	Ballast Waterline	-
		5.9 5.11	Main Frame	-
	7		Propulsion Machinery Output and Ballast Waterlines	
	7 9			
	9	9.1	er of Propulsion Machinery Propulsion Machinery Output, Ice Classes I AA, 1 A,	
		5.1	I B and I C	55

SECTION

11	Hull S	tructural Design	58
	11.1	Application	58
	11.3	Ice Strengthening Regions	58
	11.5	Vertical Extent of Design Ice Pressure	59
	11.7	Design Ice Pressure	60
13	Shell	Plating	61
	13.1	Vertical Extent of Ice Strengthening	61
	13.3	Ice Belt Plating Thickness	61
15	Frami	ng	62
	15.1	General	62
	15.3	Vertical Extent of Ice Strengthening	63
	15.5	Transverse Framing	63
	15.7	Longitudinal Framing	65
17	Ice St	ringers	65
	17.1	Stringers within the Ice Belt	65
	17.3	Stringers Outside the Ice Belt	66
	17.5	Deck Strips	67
19	Web I	Frames	67
	19.1	Design Ice Load	67
	19.3	Section Modulus and Shear Area	68
21	Bow		69
	21.1	Stem	69
	21.3	Arrangements for Towing	70
23	Stern.		71
25	Bilge	Keels	71
27	-	er and Steering Arrangements	
	27.1	Minimum Design Speed	
	27.3	Double Plated Rudders	
	27.5	Rudder and Rudder Stock Protection	
	27.7	Overload Design	72
29	Deter	mination of Ice Torque for Propulsion Systems	72
31	Prope	llers	72
-	31.1	General	
	31.3	Propeller Section	
	31.5	Additional Requirements	
33	Shafti	ng and Reduction Gears	
	33.1	Line Shafts and Thrust Shafts	
	33.3	Tail Shaft	
	33.5	Intermediate Shafts	
	33.7	Reduction Gears	
35		onal Ice Strengthening Requirements	
	35.1	Starting Arrangements	
	35.3	Sea Inlet Chests for Cooling Water Systems and	
	00.0	Fire Main	76

FIGURE 1	Vessels' Dimensions	.56
FIGURE 2	Ice Load Distribution on Ship's Side	.58
FIGURE 3	Ice Strengthening Regions	.59
FIGURE 4a	Web Frame Model	.64
FIGURE 4b	Web Frame Model	.69
FIGURE 5	Ice Stems	.70

6

CHAPTER 1 Strengthening for Navigation in Ice

Foreword (1998)

This Chapter provides requirements for optional ice strengthening classes. Section 6-1-1 contains general ice strengthening classes including ice classes for vessels intended for independent navigation in multi-year ice. Section 6-1-2 represents *1985 Finnish Swedish Ice Class Rules*, as amended.

The requirements in this Section are applicable to vessels of any length and are in addition to those in other Sections of these Rules or *Rules for Building and Classing Steel Vessels Under 90 Meters (295 Feet) in Length*, as appropriate.

Vessels intended for navigation in the Canadian Arctic are to comply with the requirements of the *Canadian Arctic Shipping Pollution Prevention Regulations*. The Bureau can issue an Arctic Pollution Prevention Certificate when authorized by the Canadian flag administration.

It is the responsibility of the owner to determine which ice class is most suitable for the intended service.

(2008) In association with the implementation of the IACS Unified Requirements for Polar Class Ships on 1 March 2008, the ABS *Guide for Building and Classing Vessels Intended for Navigation in Polar Waters, 2008* was published separately. For vessels intended to receive a Polar Ice Class the requirements of the Guide and 6-1-1/1.3 of this Chapter are applicable.

This Page Intentionally Left Blank

6

CHAPTER 1 Strengthening for Navigation in Ice

SECTION 1 General Ice Classes (1998)

Note: In association with the implementation of the IACS Unified Requirements for Polar Class Ships on 1 March 2008, this Section is updated based on these IACS requirements. For vessels for which a contract for new construction is signed between 1 January and 29 February 2008, 6-1-1/1 and 6-1-1/3 of the 2007 edition of the Rules are applicable.

1 General

1.1 Application

Vessels to be distinguished in the *Record* by **Ice Class** followed by ice class **A5** through **A1**, **A0** through **C0** or **D0** as specified in 6-1-1/3.1 are to meet the applicable requirements of this Chapter.

Non-self-propelled vessels are to comply with the requirements in 6-1-1/33. Vessels requiring ice breaker assistance are to comply with the additional requirements in 6-1-1/39.1. Vessels serving as a leading ice breaker are to comply with the additional requirements in 6-1-1/39.3.

1.3 Polar Ice Classes (1 March 2008)

Vessels intended to operate in Polar waters are to fully comply with the requirements as specified in ABS *Guide for Building and Classing Vessels Intended for navigation in Polar Waters*. Provided all requirements as specified in the Guide are met, the vessels will be distinguished in the *Record* by **ICe Class** followed by ice class **PC 7** through **PC 1**.

1.5 Ice Breaker Class

In accordance with 1-1-3/3, the classification \cancel{K} **A1 Ice Breaker** is to be assigned to vessels of ice class **A2** through **A5** built to the requirements of Section 6-1-1 of this Chapter and other relevant sections of the Rules for independent navigation in Polar Waters with Multi-year Ice. These vessels are to be distinguished in the *Record* by the notation **Ice Breaker** followed by an appropriate **Ice Class** notation in 6-1-1/3.1 (e.g., \cancel{K} **A1 Ice Breaker**, **Ice Class A5**).

3 Selection of Ice Class

3.1 Ice Class (1 March 2008)

The requirements in this Section are intended primarily for vessels intended for independent navigation in first-year ice, except that ice classes **A5** through **A2** are intended to be used as Ice Breakers in Polar waters. The ice classes are as follows

Ice Class A5 (See Note 1)	Ice Class A0
Ice Class A4 (See Note 1)	Ice Class B0
Ice Class A3 (See Note 1)	Ice Class C0
Ice Class A2 (See Notes 1 & 2)	Ice Class D0
Ice Class A1 (See Note 2)	

Notes:

- Applicable for vessels intended for use as an Ice Breaker only. The region and periods for navigation in ice are not only for first-year ice but also for multi-year ice. See 6-1-1/Table 1
- 2 **Ice Class A2**, in addition to a class for **Ice Breaker**, and **Ice Class A1** are for vessels intended for independent navigation in first year ice in non-Polar waters.

3.3 Guide for Selection

1

For the guidance of the owner in selecting the most suitable ice class, the regions, periods and ice conditions suitable for respective ice classes are shown in 6-1-1/Table 1. The conditions of first-year ice are shown in 6-1-1/Table 2.

TABLE 1 Regions and Periods for Navigation in Ice for Selecting Ice Class (1 March 2008)

		Polar Wa	aters with Multi-yea	r Ice	Year around
Ice Class	Navigating independently or when escorted by an icebreaker of the following ice classes	Central Arctic basin ⁽¹⁾	Arctic offshore shelf ⁽²⁾	Antarctic ice covered waters	navigation in water with first- year ice with the ice conditions given in 6-1-1/Table 2
A5	Independently	Year around	Year around	Year around	Extreme
		Note 3	Note 3	Note 3	Extreme
A4	Independently	July through November	Year around	Year around	Extreme
		Note 3	Note 3	Note 3	Extreme
A3	Independently	Short term, short distance entries during July through September	July through December	February through May	Extreme
A2, A1	Escorted by Ice Breaker, Ice Class A3 or Higher Ice Breaker Ice Class Vessel	Note 3	Note 3	Note 3	Extreme
A2	Independently	_	August through October	March through April	Extreme

TABLE 1 (continued) Regions and Periods for Navigation in Ice for Selecting Ice Class (1 March 2008)

		Polar We	Polar Waters with Multi-year Ice				
Ice Class	Navigating independently or when escorted by an icebreaker of the following ice classes	Central Arctic basin ⁽¹⁾	Arctic offshore shelf ⁽²⁾	Antarctic ice covered waters	navigation in water with first- year ice with the ice conditions given in 6-1-1/Table 2		
A1, A0	Escorted by A2 or Higher Ice Class Vessel	_	Note 3	Note 3	Extreme		
A1	Independently	_	Note 3	—	Very Severe		
В0	Escorted by A3 or Higher Ice Class Vessel		Note 3	Note 3	Extreme		
A0, B0, C0	Escorted by A1 or Higher Ice Class Vessel		Note 3	_	Very Severe		
A0	Independently				Severe		
B0	Independently				Medium		
C0	Independently				Light		
D0	Independently				Very Light		

Notes

1

"Central Arctic Basin" means all of the multi-year ice covered waters of the Arctic Ocean and Arctic seas to the north from the boundary of the stable Arctic pack ice zone.

2 "Arctic Offshore Shelf" means Arctic waters within landfast and shear ice zones off the shores of continents, archipelagoes, and Greenland.

- 3 Polar Ice classes, **PC 7**, **PC 6**, **PC 5**, **PC 4**, **PC 3**, **PC 2** and **PC 1**, whichever is applicable. See the ABS *Guide for Building and Classing Vessels Intended Operate in Polar Waters*.
- 4 The shaded columns shaded are applicable for **Ice Breakers**.

TABLE 2 Ice Conditions of First-Year Ice Versus Concentration and Thickness of Ice Cover

	Concentration of Ice ⁽¹⁾						
Thickness of First-Year Ice Cover in m (ft)	Very Close and Consolidated Ice, Fast Ice (from 10/10 to 9/10 or from 8/8 to 7/8)	Close Ice (from 9/10 to 6/10 or from 7/8 to 5/8)	Open Ice (from $6/10$ to 3/10 or from 5/8 to 2/8) and Fresh Channel ⁽²⁾ in Fast Ice (more than 6/10 or 5/8)	Very Open Ice (less than 3/10 or 2/8), Fresh Channel ⁽²⁾ in Fast Ice (6/10 or 5/8 and less) and Brash Ice			
1.0 (3.3) and above	Extreme	Extreme	Very severe	Severe			
from 0.6 (2) to 1.0 (3.3)	Extreme	Very severe	Severe	Medium			
from 0.3 (1) to 0.6 (2)	Very severe	Severe	Medium	Light			
less than $0.3(1)$	Severe	Medium	Light	Very light			

Notes

1

These ratios of mean area density of Ice in a given area are from the "World Meteorological Organization Sea Ice Nomenclature", Appendix B.7, and give the ratio of area of Ice concentration to the total area of sea surface within some large geographic locales.

2 Provided the channel is wider than the ship

Part6Optional Items and SystemsChapter1Strengthening for Navigation in IceSection1General Ice Classes

6-1-1

5 Definitions

5.1 Ice Belt

The *Ice Belt* is that part of the shell plating and hull appendages defined in 6-1-1/7 for self propelled vessels and in 6-1-1/33.5 for non-self propelled vessels.

5.3 Upper Ice Waterline

The *Upper Ice Waterline* is the deepest waterline at which the vessel is intended to operate in ice. The upper ice waterline is to be clearly indicated on the shell expansion drawing.

5.5 Lower Ice Waterline

The *Lower Ice Waterline* is the lightest waterline at which the vessel is intended to operate in ice. Generally, it is to be located so that propellers are fully submerged. The lower ice waterline is to be clearly indicated on the shell expansion drawing.

5.7 Displacement

The *Displacement*, *D*, is the molded displacement in metric tons (long tons) at the upper ice waterline. For the purposes of this section, the displacement may be calculated using a specific gravity of 1.00.

5.9 Length

The Length, L is the length at the upper ice waterline.

7 Extent and Length of Ice Belt Areas

The ice belt for self-propelled vessels is subdivided into the following areas:

• For ice class A5 through A1

Bow, intermediate, lower intermediate, midbody, lower midbody, stern and upper areas.

• For ice class A0 through C0

Bow, midbody and stern areas.

• For ice class **D0**

Bow area.

For ice class **A0** through **D0**, the lowest extent of the bow area need not extend below a line drawn between Q m (ft) below the lower ice waterline at the stem and B m (ft) below the lower ice waterline at the stern. (See 6-1-1/Table 3 for values of Q and B.) The extent and length of each area is shown in 6-1-1/Figure 1 and 6-1-1/Table 3.

Ice Class	A	В	С	D	Ε	F^*	G	Н	Ι	K	S	Q
A5	1.8	4.0	0.75D	1.5 + 0.01L	2.0	0.4L	0.1L	3.0	0.33F	0.15L	0.20L	
	(6.0)	(13.1)		(5 + 0.01L)	(6.5)			(10.0)				
A4	1.6	3.0	0.75D	1.2 + 0.01L	1.0	0.4L	0.05L	2.0	0.33F	0.10L	0.20L	
	(5.3)	(10)		(4 + 0.01L)	(3.3)			(6.5)				
A3	1.4	2.0	0.5D	0.9 + 0.0075L	1.0	0.4L	0.05L	1.5	0.33F	0.10L	0.20L	
	(4.6)	(6.5)		(3 + 0.0075L)	(3.3)			(5.0)				
A2	1.2	1.5	0.5D	0.6 + 0.005L	1.0	0.4L	0	1.2	0.33F	0.05L	0.15L	
	(4.0)	(3.3)		(2.0 + 0.005L)	(3.3)			(4.0)				
A1	1.0	0.8	0.5D	0.3 + 0.005L	1.0	0.4L	0	1.0	0.33F	0.05L	0.15L	
	(3.3)	(2.6)		(1 + 0.005L)	(3.3)			(3.3)				
A0	0.8	0.6	0.5D	0.2 + 0.004L	0	0.3 <i>L</i>	0	0	0	0	0.10L	10.0
	(2.6)	(2.0)		(0.7 + 0.004L)								(33.0)
В0	0.6	0.5	0	0.1 + 0.003L	0	0.3L	0	0	0	0	0.10L	9.0
	(2.0)	(1.6)		(0.3 + 0.003L)								(30.0)
C0	0.6	0.5	0	0.0025L	0	0.3L	0	0	0	0	0.10L	6.6
	(2.0)	(1.6)										(22.0)
D0	0.5	0.5	0	0.002L	0	0.3L	0	0	0	0	0	4.5
	(1.6)	(1.6)										(15.0)

TABLE 3Dimensions of Ice Belt Areas, m (ft)

* For ships with upper ice waterline parallel to centerline, F is to be as shown in 6-1-1/Figure 1d. In any case, the bow area is to extend aft not less than to a section at:

M = 0.2L abaft the fore-end of the lower ice waterline, or

N = 0.05L abaft point where the molded stem line crosses the baseline, whichever is located aft.

FIGURE 1 Ice Belt Areas

FIGURE 1a Ice Class A5 through A1

a) Where midship part of upper ice WL is parallel to CL

9 Design Ice Loads

9.1 Design Ice Pressure on the Bow Area

The design ice pressure on the bow area is to be not less than that obtained from the following equations:

 $P_b = P_o F_b$

 P_b = design ice pressure on the bow area, in N/mm² (kgf/mm², ksi)

For ice classes A5 through A1

 $P_o = A(N/k)^{0.2} (D/n)^{0.15}$

For ice classes A0, B0, C0 and D0

 $P_o = B(D/n)^{0.2}$

where

A, B =coefficients, as given in 6-1-1/Table 4N =total maximum continuous power delivered to the propellers, in kW (mhp, hp)D =displacement, as defined in 6-1-1/5.7k =746 (1000, 986)n =1000 (1000, 984)

$F_b = (F_{b1}) (F_{b2})$

 F_{b1} = coefficient is given in 6-1-1/Figure 2. It is to be determined for each bow section at the upper and lower ice waterlines depending on α_b and β_b and the maximum value obtained is to be used; if the values of coefficient F_{b1} obtained for the different sections and at different ice waterlines vary by more than 15%, different coefficients F_{b1} and, correspondingly, different design ice pressures may be used for the appropriate parts of the bow area.

 F_{b1} is not to be taken less than 0.80, but need not be taken as more than 1.25 for vessels with conventional bows; for vessels fitted with bulbous bows, the F_{b1} coefficient within the bulb area is to be as given in 6-1-1/Table 4

$$F_{h2} = 1 + i (1.3 + 0.001D)^{-2}$$

- i = coefficient given in 6-1-1/Table 4
- α_b = angle between the centerline and a tangent to the ice waterline being considered at the bow section being considered
- β_b = angle between the vertical and tangent to the bow section at the level of the ice waterline being considered.

Ice Classes	A N/mm ² (kgf/mm ² , ksi)	B N/mm² (kgf/mm², ksi)	i	<i>F</i> _{<i>b</i>1} *
A5	3.70 (0.377, 0.537)	_	5	—
A4	3.08 (0.314, 0.447)	_	4.5	—
A3	2.26 (0.23, 0.328)	_	4	—
A2	1.54 (0.157, 0.224)	_	3	—
A1	0.905 (0.092, 0.132)	_	2.5	1.45
A0	_	0.997 (0.102, 0.142)	2	1.35
B0		0.750 (0.076, 0.109)	0	1.25
C0	_	0.60 (0.061, 0.086)	0	1.25
D0	_	0.50 (0.051,0.071)	0	1.25

TABLE 4Bow Area Ice Pressure Coefficients

* Within the bulbous bow area

9.3 Design Ice Pressures on Other Ice Belt Areas

Design ice pressures on other parts of the ice belt are to be obtained from the following equations:

• For the intermediate area

$$P_i = P_o F$$

• For the midbody

 $P_m = K_m P_o$ or $P_m = K_m P_b$, whichever is less

• For the stern

$$P_s = K_s P_b$$

• For the lower intermediate area

 $P_{li} = 0.8 P_i$

• For lower midbody area

$$P_{lm} = 0.7 P_m$$

• For the upper area

$$P_{u} = 0.3 P_{b}$$

 $P_i, P_m, P_s, P_{li}, P_{lm}$ and P_u = design ice pressures on corresponding area, in N/mm² (kgf/mm², ksi)

 K_s = coefficient, as given in 6-1-1/Table 5

- $K_m = \text{coefficient, as given in 6-1-1/Table 5 or by } 2(3 + 4 \sin \beta_m)^{-1}$, whichever is less
- F_i = coefficient, as given in 6-1-1/Figure 3. It is to be determined for each section of the intermediate area depending on α_i and β_i and the maximum value obtained is to be used. F_i is not to be less than 0.7 F_b and need not be taken as more than F_b .

 α_i and β_i are defined in similar manner as α_b and β_b but for each section of the intermediate area.

$$\beta_m$$
 = as defined for β_b (see 6-1-1/9.1), but for the section at amidship.

TABLE 5Ice Pressure Coefficients in Other Areas

Ice Class	K_s	K_m
A5	0.75	0.60
A4	0.70	0.60
A3	0.65	0.58
A2	0.60	0.55
A1	0.50	0.50
A0	0.35	0.45
В0	0.22	0.35
CO	0.11	0.22

9.5 Extent of Design Ice Load

In a vertical direction, the design ice pressure is considered to be uniformly distributed on the side structure. The vertical extent of the design ice pressure is to be obtained from the following equations:

• For the bow

 $b_b = 0.61 + b_o F_{b1} \quad \text{m}$ $b_b = 2 + b_o F_{b1} \quad \text{ft}$

• For the intermediate area

 $b_i = 0.61 + 0.7b_o$ m

$$b_i = 2 + 0.7b_o$$
 ft

• *For the midbody*

 $b_m = 0.65 + 0.5b_o$ m

 $b_m = 2.13 + 0.5b_o$ ft

• For the stern

$$b_s = b_i$$

 $b_o = R (N/k)^{0.25} (D/n)^{0.2}$

where b_b , b_i , b_m and b_s are the vertical extent of the design ice pressure, in m (ft)

R = coefficient, as given in 6-1-1/Table 6

 F_{b1} = coefficient, as given in 6-1-1/9.1

For A1 to C0 ice class vessels fitted with bulbous bows, the extent b_b within the bulbous area of the ice belt is to be 30% more.

N, *D*, *k* and *n* are as defined in 6-1-1/9.1.

Ice Class	R, m (ft)
A5	0.040 (0.131)
A4	0.038 (0.125)
A3	0.035 (0.115)
A2	0.030 (0.098)
A1	0.025 (0.082)
A0	0.020 (0.066)
В0	0
CO	0
D0	0

TABLE 6 Extent of Ice Load Coefficients

11 Longitudinal Strength

Special consideration is to be given to ice-induced hull girder bending for vessels of ice classes A2 and above.

13 Shell Plating

13.1 Ice Belt with Transverse Framing

The thickness of the ice belt shell plating is to be not less than that obtained from the following equation:

 $t = 0.60s (P/Y)^{1/2} + Ct_o \text{ mm}$

 $t = 0.60s (P/Y)^{1/2} + Ct_o$ in.

where

t =thickness of the shell plating, in mm (in.)

s = distance measured along the shell between adjacent frames, in mm (in.)

- P = design ice pressure in appropriate region, as given in 6-1-1/9, in N/mm² (kgf/mm², ksi)
- Y = minimum yield strength of the material, in N/mm² (kgf/mm², ksi)

C = 1 for the bow, intermediate and lower intermediate areas

= 0.80 for the midbody and lower midbody areas

= 0.65 for the stern area

= 0.50 for the upper area

 $t_o =$ as given in 6-1-1/Table 7

In no case is the thickness of the bow, intermediate, mid and stern areas of the ice belt plating to be less than given in 6-1-1/Table 7.

TABLE 7 Minimum Thickness and Abrasion Allowance of Ice Belt Plating

Ice Class	Minimum Thickness	$t_o * mm$ (in.)
A5	22 (0.87)	6 (0.236)
A4	20 (0.79)	6 (0.236)
A3	18 (0.71)	6 (0.236)
A2	16 (0.63)	5 (0.20)
A1	14 (0.55)	4 (0.16)
A0	12 (0.47)	3 (0.118)
В0	10 (0.39)	3 (0.118)
CO	8 (0.315)	3 (0.118)
D0	8 (0.315)	1 (0.04)

* Values of t_o may be reduced down to $0.3t_o$, if an abrasive-resistant coating is used for the ice belt plating. Special approval of this will be based on necessary evidence including submission of results of operational experience in ice.

13.3 Ice Belt with Longitudinal Framing

The thickness of ice belt shell plating is to be not less than that obtained from the following equation:

$$t = 0.7s (P/Y)^{1/2} + Ct_o \text{ mm}$$

 $t = 0.7s (P/Y)^{1/2} + Ct_o \text{ in.}$

s = distance between longitudinal frames, in mm (in.)

 t, P, Y, t_o, C are as defined in 6-1-1/13.1.

The thickness of ice belt plating is also to be not less than the thickness given in 6-1-1/Table 7, plus 1 mm (0.04 in.).

13.5 Bottom Plating

The thickness of plating at and below the lower turn of the bilge for ice classes **A5** to **A1** is to be not less than that obtained from the following equation:

6-1-1/9.3

 $t = s \left(\frac{KP}{Y} \right)^{1/2} + 2 \qquad \text{mm}$

 $t = s (KP/Y)^{1/2} + 0.08$ in.

where

t	=	thickness of the bottom plating, in mm (in.)
S	=	frame spacing, in mm (in.)
K	=	coefficient, as given in 6-1-1/Table 8
Р	=	design ice pressure, as expressed in 6-1-1/9.1 and
Y	=	minimum yield strength, as defined in 6-1-1/13.1

TABLE 8Coefficient K

Ice Classes	Bow Area	Intermediate and Stern Area	Midbody Area
A5	0.32	0.23	0.15
A4	0.29	0.19	0.13
A3	0.26	0.15	0.11
A2	0.23	0.11	0.10
A1	0.21	0.09	0.09

13.7 Changes in Plating Thickness

Plating thickness in the transverse direction from the ice belt to the bottom and in the longitudinal direction within the ice belt is to be gradually tapered.

15 Transverse Framing

15.1 Definitions

15.1.1 Main Frames

Main Frames are the hold, tween deck and peak frames referred to in Section 3-2-5.

15.1.2 Intermediate Frames

Intermediate Frames are the additional frames fitted within the ice belt between the main frames, to comply with 6-1-1/15.3.

15.1.3 Standard Frame Spacing

Standard Frame Spacing is the frame spacing specified by 3-2-5/1.7 and is measured along the centerline.

15.3 Ice Belt Frame Spacing

Except for the midbody and stern areas of ice class **C0**, spacing between any adjacent frames measured along the centerline is in general not to exceed one half of the standard frame spacing defined in 6-1-1/15.1.3. A larger spacing between any adjacent frames may be approved if the intermediate frames have end fixity similar to that of the main frames. In no case is the spacing between any adjacent frames measured along side plating to exceed 0.75 of the standard frame spacing given in 6-1-1/15.1.3.

15.5 Main and Intermediate Frames

15.5.1 Section Modulus

The section modulus, SM, of each transverse main and intermediate frame in association with the width of plating, s, to which it is attached is to be not less than that obtained from the following equation:

$$SM = Ks\ell b(P/Y)$$
 cm³

$$SM = 0.144Ks\ell b(P/Y)$$
 in³

where

 $K = (160 - 100b/\ell)K_1K_2$

- s = distance between adjacent frames, in mm (in.), measured along the lowest ice waterline in way of the compartment being considered
- ℓ = span of the main frame, in m (ft), measured along the frame between decks or between deck and inner bottom
- b = vertical extent of the design ice pressure, as defined in 6-1-1/9.5, in m (ft)
- P = the design ice pressure, as defined in 6-1-1/9
- Y = minimum yield strength of the material, in N/mm² (kgf/mm², ksi)

For framing system with web frames and supporting stringers in accordance with 6-1-1/15.9, coefficient K_1 is to be obtained from the equation:

 $K_1 = 2/(3+j)$

where *j* = number of the supporting stringers.

For framing system without web frames and supporting stringers, coefficient K_1 is to be as given in 6-1-1/Table 9a.

 K_2 = 1.1 for the midship area of the ice belt for ice classes A1 through C0 = 1 elsewhere

The web thickness, *t*, of the main and intermediate frames is to be not less than:

t = 0.013h + 6 mm

t = 0.013h + 0.24 in.

where *h* is the depth of the main and intermediate frame, in mm (in.).

In no case is the web thickness *t* to be less than the following:

Ice class A5 through A2	10 mm (0.39 in.)
Ice class A1 and A0	9 mm (0.35 in.)
Ice class B0	8.5 mm (0.34 in.)
Ice class C0 and D0	8.0 mm (0.31 in.)

15.5.2 Upper End of Frames

Main and intermediate frames are to extend up to the first deck or platform above the ice belt. They are to be welded and bracketed to the deck beams or to the deck longitudinals, as shown in 6-1-1/Figure 4a and 6-1-1/Figure 4b.

For ice classes **A2** through **D0**, where the lowest or only deck, or the lowest platform, is situated above the ice belt so that the distance between the deck, or platform, and the upper boundary of the ice belt exceeds "*d*" meters (feet), given in 6-1-1/Table 9b, the upper ends of intermediate frames in the midbody and stern areas (**A2** through **C0**) or bow area (**D0**) may terminate at a deep stringer situated at least 0.6 m (2 ft) above the ice belt.

For ice classes A0, B0, C0 and D0 in tween deck spaces, where the tween deck is 0.5 m (1.6 ft) or more above the upper ice waterline but within the ice belt, the upper ends of intermediate frames may terminate for ice class A0 at a stringer situated at least 0.5 m (1.6 ft) above the ice belt, and for ice classes B0, C0 and D0 at an intercostal longitudinal at least 0.5 m (1.6 ft) above the ice belt.

The upper ends of the frames terminated at a deep stringer are to be welded and bracketed to it as shown in 6-1-1/Figure 4c.

The intermediate frames terminated at an intercostal stringer or longitudinal are to be welded to it as shown in 6-1-1/Figure 4d.

TABLE 9aCoefficient K1 for the Framing System without Websand Supporting Stringers

Termination of the upper & lower ends of the main & intermediate frames	At the upper deck (or platform) of the adjacent upward spaces	Other
At bottom structures or at the lower deck of the adjacent downward spaces (hold, tween deck, tank, etc.)	0.9	1
Other	1	1.15

TABLE 9b Distance, m (ft)

Ice Class	Where Web Frames are Fitted	No Web Frames are Fitted
A2	5.2 (17)	
A1	4.0 (13)	
A0	3.0 (10)	
B0	2.1 (7)	3 (10)
C0	1.2 (4)	1.8 (6)
D0	1.2 (4)	1.8 (6)

15.5.3 Lower End of Frames

Main and intermediate frames are to extend down to the inner bottom or to the double bottom margin plate. For ice classes **A2**, **A1** and **A0**, the intermediate frames may terminate at a deck 1.0 m (3.3 ft) below the ice belt. For ice classes **B0**, **C0** and **D0**, the intermediate frames may terminate at a stringer or intercostal longitudinal situated at least 1.0 m (3.3 ft) below the ice belt. The main and intermediate frames are to be attached and bracketed either to the inner bottom or to the double bottom margin plate or to the deck beams, or deck or to the stringer as shown in 6-1-1/Figure 5.

For vessels not having a double bottom, the intermediate frames are to extend down to a point below the top of the bottom transverses and are to terminate at an intercostal longitudinal. For ice classes **A0**, **B0**, **C0** and **D0**, the intermediate frames need not extend below the top of the floors, provided they terminate on an intercostal longitudinal not less than 0.8 m (2.6 ft) below the ice belt. The intermediate frames are to be attached to the bottom intercostal longitudinals.

15.5.4 Connection to Stringers and Decks

Main and intermediate frames are to be attached and bracketed to each supporting (deep) stringer, deck and deck beam within the ice belt.

15.7 Web Frames

The section modulus, *SM*, of each web frame, in association with the plating to which it is attached, is to be not less than that obtained from the following equation:

$$SM = Ks_1 \ell b(P/Y)$$
 cm³

$$SM = 0.144Ks_1\ell b(P/Y)$$
 in³

where

 $K = (96 - 36b/\ell)K_1K_2K_3$

 $K_1 = 1.06 - 0.0024i^2$, but not less than 0.4

i = number of the main and intermediate frames between adjacent web frames

 $K_2 = 1$ for the bow, intermediate and stern areas of the ice belt

= 1.2 for the midship area of the ice belt for ice classes **A1** through **C0**

= 1.1 for the midship area of the ice belt for ice classes **A5** through **A2**

- $K_3 = 1$, if there is one supporting (deep) stringer
 - = 0.90, if there are two supporting (deep) stringers
 - = 0.85, if there are three or more supporting (deep) stringers
- s_1 = distance between the web frames, in mm (in.), measured along lower ice waterline in way of the compartment being considered
- ℓ = span, in m (ft), measured in a straight line along the hold web frame from the line of the inner bottom (extended to the side of the vessel) to the lowest deck of the hold, or for the tween deck web frame measured between the decks as shown in 6-1-1/Figure 4a or 6-1-1/Figure 4b and 6-1-1/Figure 5
- b = as defined in 6-1-1/9.5, in m (ft)
- P = as defined in 6-1-1/9, in N/mm² (kgf/mm², ksi)
- Y = as defined in 6-1-1/13.1, in N/mm² (kgf/mm², ksi)

In determining the section modulus, the effective width of the plating is to be the distance between the webs or 0.125ℓ , whichever is less.

Thickness of the web plate, t, is to be not less than that obtained from the following equation:

t = 0.01h + 8 mm t = 0.01h + 0.32 in.

where *h* is the depth of the web frame; *t* need not exceed 18 mm (0.71 in.) for ice classes **A5** through **A2** and 15 mm (0.59 in.) for other ice classes.

The web frames are to be attached and bracketed to the solid floors and the beams at each ice deck.

15.9 Ice Stringers

15.9.1 Arrangements

Deep continuous or intercostal stringers are to be fitted within the ice belt throughout the length of the vessel, except that for ice class **C0** and **D0** vessels, the ice stringers need be fitted only in the bow area of the ice belt. The spacing between adjacent stringers or between the stringer and a deck or the double bottom measured along the shell is to be not more than indicated in 6-1-1/Table 10. One of the ice stringers is to be fitted about 200 to 400 mm (8 to 16 in.) below the upper ice waterline, if there is no deck in this area. For ice classes **A5** through **A0**, another stringer is to be fitted about 100 to 300 mm (4 to 12 in.) below the lower ice waterline, if there is no deck or similar support in this area.

TABLE 10Maximum Stringer Spacing, m (ft)

Ice Class	For Framing without Web Frames	System with Web Frames
A5 through A2	1.5 (5)	2.1 (7)
A1 through D0	1.5 (5)	2.7 (9)

15.9.2 Scantlings and Connections

Where web frames are not fitted, the ice stringers may be intercostal between frames and their scantlings are to be not less than those for the main frames. They are to be welded to the main and intermediate frames. Where web frames are fitted, the shear area of the deep ice stringer within one frame space from the web frame is to be not less than that of the web frames. The depth of the ice stringer at the midspan between the web frames is to be not less than twice the depth of the main frame. The face, or flange, area of the deep stringer is to be not less than that of the web frame. The face, or flange, area of the deep stringer is to be not less than that of the web frame. The deep stringer referred to in 6-1-1/15.5.2, at which the upper ends of frames are terminated, is to have the scantlings as required in 6-1-1/15.9. The web plate and the flange, or face, of intercostal ice stringers are to be attached to those of the main and intermediate frames. The web plate and the face, or flange, of deep ice stringers are to be attached to those of the main and intermediate frames. The web frames. The main and intermediate frames are to be bracketed to the bulkheads, so that the shear area at the bulkhead is twice that of the ice stringer web.

Stiffeners or tripping brackets are to be fitted as required in 3-2-6/3.7 and 3-2-6/3.9.

17 Longitudinal Framing

17.1 General

For vessels of ice classes **A5**, **A4** and **A3**, longitudinal framing within the bow area of the ice belt is to be specially considered.

17.3 Spacing of Longitudinals

The spacing measured along the shell between adjacent longitudinals and between the longitudinal and the double bottom or a deck within the ice belt is not to exceed one half of the spacing as given in 3-2-5/1.7.

17.5 Section Modulus

The section modulus, *SM*, of each longitudinal, in association with the width of plating, *s*, to which it is attached, is to be not less than that obtained from the following equation:

$$SM = 70s\ell^2 K_o(P/Y) \qquad \text{cm}^3$$

$$SM = 10s\ell^2 K_o(P/Y)$$
 in³

where

s = spacing of longitudinals, as defined in 6-1-1/17.3, in mm (in.)

 ℓ = span, in m (ft), of the longitudinals measured at the lower ice waterline

$$K_o = (2.44/\ell)^{1/2} (\ell \text{ in m})$$

= $(8/\ell)^{1/2}$ (ℓ in ft), but not less than 0.4

P = the design ice pressure, as defined in 6-1-1/9

Y =minimum yield stress of the material, in N/mm² (kgf/mm², ksi)

The longitudinals are to be attached and bracketed to the webs and to the bulkheads to provide a shear area at least twice the net shear area of the longitudinal.

17.7 Web Frames

The section modulus, *SM*, of the web frame, in association with the plating to which it is attached, is to be not less than that obtained from the following equation:

$$SM = K_o K s_1 \ell b (P/Y)$$
 cm³

$$SM = 0.144K_{o}Ks_{1}\ell b(P/Y)$$
 in³

where

 $K_o =$ as defined in 6-1-1/17.5

K = 165 without struts

= 100 with one horizontal strut

= 80 with two struts

= 70 with three struts

 s_1 = as defined in 6-1-1/15.7, in mm (in.)

 ℓ = as defined in 6-1-1/15.7, in m (ft)

- b = as defined in 6-1-1/9.5 for particular area of the ice belt, in m (ft)
- P = as defined in 6-1-1/9 for particular area of the ice belt

$$Y =$$
 as defined in 6-1-1/13.1

In determining the section modulus, the effective width of plating is to be the distance between the webs or 0.125ℓ , whichever is less.

The net sectional area of the web plate including effective end brackets, where applicable, is to be not less than that obtained from the following equation:

$$A = K_1 SM/\ell \qquad \text{cm}^2$$
$$A = 8.33 K_1 SM/\ell \qquad \text{in}^2$$

where

 $K_1 = 0.009$ without struts

= 0.015 with one or more struts

Plate thickness is to be not less than given in 6-1-1/15.7.

17.9 Struts

Where one or more struts are fitted as an effective supporting system for the ice belt structure, they are to be located within the ice belt and spaced so as to divide the supported web into spans of approximately equal length. Inboard ends of the struts are to be supported sufficiently by longitudinal bulkhead transverses having a section modulus not less than 0.9 of that required by 6-1-1/17.7. The sectional area of the strut is to be obtained from the following equation:

$$A = (bs_1/K)(P/Y)K_o \qquad \text{cm}^2 \text{ (in}^2)$$

where

- b = as defined in 6-1-1/9.5 for particular area of the ice belt, in m (ft)
- s_1 = as defined in 6-1-1/15.7, in mm (in.)
- $K = 0.04 0.0175(\ell/r)$ for SI & MKS units
 - = 0.0333 0.00175(ℓ/r) for US units
- ℓ = unsupported span of the strut, m (ft)
- r =least radius of gyration, cm (in.)
- P = as defined in 6-1-1/9 for particular area of the ice belt
- Y = as defined in 6-1-1/13.1
- $K_o =$ as defined in 6-1-1/17.5

19 Alternative Framing Arrangements

Where framing arrangements differing from those given in 6-1-1/15 and 6-1-1/17 are used for the ice belt structures, special approval of the framing members will be based on submitted stress analysis of the structure.

21 Peak Frames

Main and intermediate frames in forepeaks are to extend down to the floors or the bottom transverses or the stem. The section modulus of each peak frame is to be as given in 6-1-1/15.5.1 where ℓ , in m (ft), is measured between deep ice stringers and $K_1 = 1$. The spacing between the deep ice stringers or platforms measured along the shell is to be not more than 1.5 m (5 ft) for forepeaks of ice classes **A5** through **A2**. For the afterpeaks of ice classes **A1** through **B0**, the distance is to be not more than 2.1 m (7 ft).

For ice classes **A5** through **A2**, transverse peak frames are to be fitted so that the angle between the web of the transverse frame and the shell plating, γ , is not less than 40 degrees at any waterline within the ice belt. If this angle is less than 60 degrees, the section modulus of the transverse peak frames is to be increased by the factor.

 $K = 2 \cos \gamma$ where 40 degrees $\leq \gamma \leq 60$ degrees

For all ice classes except **C0** and **D0**, the intermediate frames are to extend down to the bottom structure and up to the first deck above the ice belt. Intermediate frames in the forepeak for ice class **C0** and **D0** may terminate at the first stringer above the ice belt.

23 Double Bottom

23.1 Inner Bottom

An inner bottom is to be fitted between the peaks in all vessels of ice classes **A5** to **A3** and in **A2** ice class vessels of lengths of 61 m (200 ft) and over.

23.3 Transversely Framed Bottom

For ice classes **A5** through **A1**, solid floors are to be fitted at each web frame along the length of the vessel, and, in addition, at each main frame within the bow, lower intermediate and lower stern areas of the ice belt. Spacing of the solid floors is to be not more than required by 3-2-4/5 or the appropriate sections of Part 5, as applicable. Open floors or bilge brackets extending to longitudinals or side girders are to be fitted at each intermediate frame that extends to the inner bottom. The distance between bottom side girders is to be not more than 2.4 m (8 ft) for the bow area of ice classes **A5** through **A3** and 3.0 m (10 ft) elsewhere for ice classes **A5** through **A1**. Spacing of the side girders is to be not more than required by 3-2-4/3.7.

23.5 Longitudinally Framed Bottom

For ice classes **A5** through **A1**, solid bottom transverses or solid floors are to be fitted at each web frame along the length of the vessel, but at not more than 1.8 m (6 ft) within the bow, lower intermediate and lower stern areas of the ice belt. Spacing of the solid floors is to be not more than required by 3-2-4/5 or the appropriate sections of Part 5, as applicable. Special consideration will be given to wider spacings.

Open floors or bilge brackets extending to the outboard longitudinals are to be fitted throughout at each frame that extends to the inner bottom, except ice classes **B0**, **C0** and **D0**, where only the bow area is to comply with this requirement. The spacing of the bottom longitudinals within the bow, lower intermediate and lower stern areas of the ice belt is to be not more than 0.6 m (2 ft) for ice classes **A5** through **A3** and 0.7 m (2.3 ft) for ice classes **A2** through **A0**.

25 Ice Decks

25.1 General

The following requirements apply to decks or parts of decks situated within the ice belt. For vessels not having decks in the ice belt and for vessels of ice classes **A5** through **A2** having only one deck in the ice belt, the following requirements apply also to decks or parts of decks above and below the ice belt to which the main and intermediate frames extend. Where there are three or more decks within the ice belt, the deck or parts of the deck situated within the upper area of the ice belt, defined in 6-1-1/7, need not comply with these requirements.

25.3 Deck Plating

The thickness of the stringer plate is to be not less than:

$$t = k(s^2b P)^{1/3}$$
 mm (in.)

where

k = 0.12 (0.257, 0.0523) s = distance between the deck beams, in mm (in.) b = as defined in 6-1-1/9.5, in m (ft), for the particular area of the ice beltP = as defined in 6-1-1/9.1 or 6-1-1/9.3, for the particular area of the ice belt

The width of the stringer plate is to be not less than five times the depth of the main frame for ice classes **A5** and **A4** and four times the main frame depth for **A3** to **A0** ice classes. For ice classes **A5** through **A0**, the thickness of the deck plating is to be not less than 0.75 times the required thickness of the stringer plate.

25.5 Deck Transverses and Deck Beams

25.5.1 Transversely Framed Decks

Partial beams or brackets are to be fitted at every intermediate frame for ice classes **A5** to **A1**. These partial beams or brackets are to be extended from the frames to a deck longitudinal or deck girder. The length of these partial beams or brackets is to be not less than the width of the stringer plate.

25.5.2 Longitudinally Framed Decks

Deck transverses are to be fitted at every web frame and, in addition, not less than at every second main frame for ice classes **A5** to **A2**, at every third main frame for ice classes **A1** to **A0** and at every fourth main frame for ice class **B0**.

Partial beams or brackets are to be fitted at all other main frames and at every intermediate frame for ice classes **A5** to **A0**, and at all other main frames for ice classes **B0**, **C0** and **D0**. The partial beams or brackets are to be extended from the frames to a deck longitudinal or deck girder situated not less than 1.5s from the inboard edge of the frames, where s is as defined in 6-1-1/25.3

25.5.3 Scantlings

The sectional area of the beams and deck transverses is to be not less than:

$$A = K_1 s b(P/Y) \cos\beta \quad \text{cm}^2$$
$$A = 1.2K_1 s b(P/Y) \cos\beta \quad \text{in}^2$$

The moment of inertia of the beams is to be not less than:

$$MI = kK_2 s\ell^2 bP \cos\beta \qquad \mathrm{cm}^4 \ (\mathrm{in}^4)$$

where

k

= 1.0 (9.81, 0.1191)

- P = as defined in 6-1-1/9.1 or 6-1-1/9.3, in N/mm² (kgf/mm², ksi), for the particular area of the ice belt
- b = as defined in 6-1-1/9.5, in m (ft), for the particular area of the ice belt
- s = distance between the beams, in mm (in.)
- ℓ = the span of the beam, measured in m (ft), between the inboard edge of the frame and the deck longitudinal or deck girder supporting the beam
- Y = as defined in 6-1-1/13.1
- β = as defined in 6-1-1/9.1 and 6-1-1/9.3, in degrees, for the particular area of the ice belt
- $K_1 = 8.5$ for ice classes **A5** to **A1**

= 6.6 for ice classes **A0**, **B0**, **C0** and **D0**

 $K_2 = 0.24$ for ice classes **A5** to **A1**

= 0.13 for ice classes **A0**, **B0**, **C0** and **D0**

The sectional area and the moment of inertia of the partial beams and of the brackets are to be not less than required above. The beams and the partial beams are to be bracketed to the deck longitudinals or deck girders. Beams or partial beams or brackets fitted at the web frames are to be reinforced so that their section modulus, *SM* is to be not less than:

$$SM = K_3 SM_{wf} \ell_{wf} / \ell \qquad \text{cm}^3 (\text{in}^3)$$

where SM_{wf} and ℓ_{wf} are the section modulus and the span of the web frame, as defined in 6-1-1/15.7, respectively.

 $K_3 = 0.8$ for ice classes **A5** through **A1**

= 0.5 for ice classes **A0**, **B0**, **C0** and **D0**

25.7 Decks with Wide Openings

Within the intermediate and midbody areas of the ice belt, the cross sectional area of the deck outside the line of openings is to be not less than:

$$A = Kb\ell(P/Y) \cdot 10^3 \qquad \text{cm}^2$$
$$A = 14.4Kb\ell(P/Y) \qquad \text{in}^2$$

where

K = 8.2 for ice classes **A5** to **A1**

= 6.2 for ice classes **A0** and **B0**

- b = as defined in 6-1-1/9.5, in m (ft), for the particular area of the ice belt
- ℓ = the length of the opening, in m (ft), but need not be taken as more than 0.1L
- P = as defined in 6-1-1/9.3, for the particular area of the ice belt

Y = as defined in 6-1-1/13.1

L =as defined in 6-1-1/5.9, in m (ft)
27 Bulkheads

27.1 General

For ice classes **A5** to **A1**, those parts of transverse bulkheads situated within the ice belt are not to be vertically corrugated.

27.3 Scantlings

For ice classes **A5** to **A0**, the thickness of that part of the bulkhead adjacent to the side shell and within the ice belt is to be not less than the thickness of the adjacent frames or of the stringers connected to the bulkhead, whichever is greater. The width of these parts of the bulkhead is to be not less than shown in 6-1-1/Table 11. These parts of the bulkhead adjacent to the shell within the ice belt are to be fitted with stiffeners normal to the shell plating. The stiffeners are to be welded to a vertical bulkhead stiffener and welded and bracketed to the side longitudinals. Where the shell is transversely framed, brackets are to be welded to the shell and extended and attached to adjacent frames.

TABLE 11 Minimum Width of Reinforced Bulkhead Plating

	Area of the Ice Belt				
Ice Class	Peak Bulkheads m (ft)	Bow and Intermediate Areas m (ft)	Midbody Area m (ft)	Stern Area m (ft)	
A5 through A2	1.6 (5.2)	1.4 (4.6)	1.2 (4.0)	1.4 (4.6)	
A1 and A0	1.2 (4.0)	1.2 (4.0)	1.0 (3.3)	1.0 (3.3)	

29 Stem and Stern Frame

29.1 General

The requirements of Section 3-2-13 of the Rules are to be complied with. The stem and stern frame for ice classes **A5** through **A1**, and for ice class **A0**, vessels of displacements more than 50,000 tonnes (49,200 Lt) are to be constructed of rolled bar, cast or forged steel. Shaped plate stem may be used elsewhere. All joints and connections are to fully develop the strength of the stem and stern frame. All rudders are to be protected against ice impacts for going astern.

29.3 Stem

29.3.1 Solid Stem

The cross sectional area of a stem made of rolled bar, cast or forged steel from the center vertical keel to 0.01L above the ice belt is to be not less than:

$$A = K_1 D^{1/3} (L - 61) + A_o \qquad \text{cm}^2$$

$$A = 0.0473 K_1 D^{1/3} (L - 200) + A_o \qquad \text{in}^2$$

where

$$K_1$$
 and A_o = as given in 6-1-1/Table 12
 D = as defined in 6-1-1/5.7
 L = as defined in 6-1-1/5.9, in m (ft), but is not to be taken less than 61 m (200 ft)

1 10

For vessels of displacements less than 2,500 tonnes (2,460 Lt) the cross sectional area given by the above equation may be reduced 10%. The cross sectional area of the stem above the ice belt may be reduced gradually to the value given in Section 3-2-13.

Ice Class	$A_o \ cm^2 \ (in^2)$	K_1
A5	750 (116.2)	0.28
A4	750 (116.2)	0.28
A3	700 (108.5)	0.27
A2	500 (77.5)	0.24
A1	200 (31.0)	0.18
A0	62 (9.6)	0.13
B0	50 (7.8)	0.705
CO	45 (7.0)	0.095
D0	45 (7.0)	0.095

TABLE 12 Solid Stem Bar Coefficients

29.3.2 Shaped Plate Stem

Thickness of shaped plate stems within the bow area of the ice belt is to be not less than

 $t = 0.8s(P/Y)^{1/2} + t_o$ but not less than 0.04*R*.

where

t = required thickness of plate stem, in mm (in.)

s = distance between frames, brackets (breast hooks) or stiffeners, in mm (in.)

P, Y and t_o are as defined in 6-1-1/13.1.

R = the inside radius of the stem at the given section, in mm (in.). Need not be taken greater than 800 mm (31.5 in.) for ice class A1 and 625 mm (24.6 in.) for ice classes A0 through D0

At any section, the fore and aft length of the stem plate is to be not less than 15t.

29.3.3 Arrangement

The outer surface of connections of the shell plating to the stem is to be flush. The stem is to be supported by floors, webs, frames, breasthooks or brackets spaced not more than 610 mm (24 in.). In addition, shaped plate stems are to be supported in the centerline by a plate, web or bulkhead having the same thickness as the center vertical keel and a width not less than 610 mm (24 in.).

29.5 Stern Frame

The stern post is to be of size obtained from 3-2-13/3.5 through 3-2-13/3.11, with all thicknesses increased by coefficient K, as given in 6-1-1/Table 13. In addition, factors C_f and C_c in 3-2-13/3.5 are to be multiplied by K^2 .

Ice Class	K
A5	2.0
A4	1.9
A3	1.8
A2	1.6
A1	1.4
A0	1.2
В0	1.12
C0	1.07
D0	1.05

TABLE 13Stern Post Coefficient

31 Power of Propulsion Machinery

31.1 Minimum Power

For ice classes **A5** through **C0**, the total ahead horsepower delivered to the propellers, N, is to be not less than the lesser of the values obtained from the following two equations:

i)
$$N = kA(B)^{0.8}(L)^{0.4}(1 + me^{5D \times 10^{-6}})$$
 kW (mhp, hp)

$$ii) \qquad N = k(C + KD \times n/1000)$$

where

B = the maximum breadth of the vessel, in m (ft), at the upper ice	waterline
--	-----------

L = the length of the vessel, in m (ft), as defined in 6-1-1/5.9

e = base of natural logarithms

D = as defined in 6-1-1/5.7

n = 1 (1.016)

$$k = 0.735(1, 0.986)$$

A, m, C and K are as given in 6-1-1/Table 14.

For ice classes **A5** to **A2**, only equation *i*) is to be used.

For vessels with unconventional features, the power delivered to the propellers may also be less than given in equation *i*), if the particular vessel is able to progress continuously in any ice condition corresponding to its ice class. Special approval of this will be based on necessary evidence including the submission of results of full-scale and model tests. Special consideration will be given when the value of *N* determined from the equations in 6-1-1/31.1 is less than N_o in 6-1-1/Table 14.

TABLE 14 Power Coefficients

The power given may be reduced up to 10/8 for vessels fitted with controllable pitch propeners							
Ice Class	A SI & MKS (US units)	т	С	K	N _o kW (mhp, hp)		
A5	360 (86.6)	1.3			44,740 (60,840, 60,000)		
A4	270 (64.9)	1.0			22,370 (30,420, 30,000)		
A3	200 (48.1)	0.8			13,420 (18,250, 18,000)		
A2	136 (32.7)	0.6	_		6,710 (9,125, 9,000)		
A1	107 (25.7)	0.6	1500	400	3,730 (5,070, 5,000)		
A0	93 (22.4)	0.6	1000	350	1,490 (2,030, 2,000)		
В0	79 (19.0)	0.6	500	300	746 (1,040, 1,000)		
C0	64 (15.4)	0.6	0	250	373 (507, 500)		

The power given may be reduced up to 10% for vessels fitted with controllable pitch propellers

31.3 Astern Power

The astern power delivered to the propellers for ice classes **A5**, **A4**, and **A3** is to be not less than 85% of that required in 6-1-1/31.1 and for ice classes **A2** to **C0** not less than 70% of that required in 6-1-1/31.1. For ice class **D0**, see 4-1-1/7.5, as applicable.

33 Non-self-propelled Vessels

33.1 General

Barges designed for being towed and/or pushed in broken ice and built to the requirements of this section and related sections of the ABS *Rules for Building and Classing of Steel Barges* will be designated by ice classes **A0**, **B0**, **C0** and **D0**. Non-self propelled vessels other than barges covered by these Rules will be subject to special consideration.

33.3 Ice Classes

For the guidance of the Owner, the ice conditions considered appropriate for towing or pushing barges are shown below:

Ice Class	Towed/Pushed	Towed by ice class A1 vessel *	Towed by ice class A2 vessel *
A0	severe	very severe	extreme
В0	medium	severe	
C0	light	medium	
D0	very light	light	

* Breadth of towed barge not to exceed the breadth of towing vessels.

Barges intended to be pushed in "very severe" or "extreme" ice conditions will be subject to special consideration.

33.5 Ice Belt

The ice belt is divided into three parts: bow, midbody and aft areas, except that for class **D0**, the ice belt applies to bow area only. For barges designed for tow by either end, bow area requirements apply to both ends. For such barges, the midbody and two bow areas of the ice belt are to be used. The bow area of the ice belt is to extend forward from the section 0.025L aft of either the point where the rake reaches the bottom or where the lightest ice waterline reaches its greatest breadth, whichever is greater. The aft area of the ice belt is to extend aft of the section 0.025L forward of the point where the lightest ice waterline reaches its greatest breadth, whichever is between the bow and aft areas.

Upper boundary of the ice belt throughout the length of the barge is to be not less than 0.75 m (30 in.) above the deepest ice waterline for ice class **A0** and not less than 0.6 m (24 in.) above the deepest ice waterline for ice classes **B0** and **C0** and not less than 0.5 m (20 in.) above the deepest ice waterline for ice class **D0**. The lower boundary of the ice belt is to be not less than 0.6 m (24 in.) below the lightest ice waterline for the midbody and aft areas of ice class **A0**. In the bow area of ice class **A0**, the ice belt is to extend to the bottom of the side shell and is to include the bottom shell in way of the rake. For ice classes **B0**, **C0** and **D0**, the lower boundary of the ice belt is to be not less than 0.5 m (20 in.) below the lightest ice waterline throughout the length of the barge.

33.7 Design Ice Loads

The design ice pressure on the bow area, P_{bow} , is to be as given for P_b in 6-1-1/9.1, where $F_{b1} = 1.25$ for vertical structures and $F_{b1} = 1$ for the rakes. The design ice pressures on the midship and aft areas, P_{mid} and P_{aft} are to be

 $P_{mid} = K_m P_{bow}$ $P_{aft} = K_s P_{bow}$

where K_m and K_s are as given in 6-1-1/Table 5.

The vertical extent of the design ice pressure for all of the ice belt areas is to be:

0.61 m (24 in.) for ice class **A0** 0.51 m (20 in.) for ice class **B0** 0.45 m (18 in.) for ice class **C0** 0.40 m (16 in.) for ice class **D0**

33.9 Structural Arrangements

The thickness of the shell plating within the ice belt areas is to be as required by 6-1-1/13.1 or 6-1-1/13.3. Structural arrangements and scantlings of the ice belt framing members are to be as required by 6-1-1/15, 6-1-1/17 and 6-1-1/21. Decks and bulkheads situated within the ice belt and, where there are no decks within the ice belt, the deck above and below the ice belt to which the main and intermediate frames are extended are to comply with the requirements of 6-1-1/25 and 6-1-1/27.

35 Hull Structural Materials

35.1 General

All hull structural materials are to be in accordance with the requirements of Part 2, Chapter 1. In addition, material grades for ice belt structures and exposed shell and main strength deck structures are to be selected based on the design service temperature and material class, as defined as follows.

35.3 Design Service Temperature

The design service temperature is to be taken in accordance with 6-1-1/Table 15. Design service temperature for insulated members will be specially considered upon submission of substantiating data.

		Ice Class			
	Zones	A5 through A2	A1 and A0	B0 and C0	D0
a.	Ice Belt Structures (other than Area c)				
	1. external plating	-40 (-40)	-30 (-22)	-20 (-4)	-10 (14)
	2. framing ⁽¹⁾ for all items above	-30 (-22)	-20 (-4)	-10 (14)	0 (32)
b.	Above Ice Belt ⁽³⁾				
	1. external plating	-40 (-40)	-30 (-22)	-20 (-4)	-10 (14)
	2. framing ⁽¹⁾ for external plating	-30 (-22)	-20 (-4)	-10 (14)	0 (32)
	3. plating ⁽²⁾ and framing in enclosed spaces				
	i) Heated space	0 (32)	0 (32)	0 (32)	0 (32)
	ii) Unheated space	-20 (-4)	-10 (14)	0 (32)	0 (32)
c.	More than 0.3 m (1 ft) below the lower ice waterline.	0 (32)	0 (32)	0 (32)	0 (32)

TABLE 15Design Service Temperature, degrees C (degrees F) (1998)

Notes:

1 Includes bulkheads and decks attached to the external plating within 600 mm (23.5 in.) from the plating.

2 Excludes those portions covered by Note 1 above.

3 Above Area c for class **D0** excluding the bow area.

35.5 Material Class of Structural Members

The material class of hull structural members is to be in accordance with 6-1-1/Table 16.

TABLE 16Material Class of Structural Members (1998)

Material class given in this table refers to the classes in 6-1-1/Table 17 or in 6-1-1/35.9, as applicable.

		Ice C	lasses
	Structural Members	A0 and above	B0 and below
a.	Within Ice Belt (other than Area c)		
	1. Bottom and side shell plating-bow, intermediate and lower intermediate areas	III	Ι
	2. Bottom and side shell plating-other ice belt areas	II	Ι
	3. Framing ⁽¹⁾ – bow and intermediate areas	II	Ι
	4. Framing ⁽¹⁾ – other ice belt areas	Ι	Ι
	5. Stem, ice knife, propeller nozzle, shaft bracket, rudder, stern frame and rudder horn	III	Ι
	6. Other structures	Ι	Ι
b.	Above Ice Belt		
	1. Sheer strake and deck stringer		
	i) within 0.4 <i>L</i> amidships	III	III
	ii) outside 0.4 <i>L</i> amidships	II	II
	2. Side shell and strength deck plating ^{(2),(3)}	Ι	Ι
	3. Other structures ^{(2),(3)}	Ι	Ι
c.	More than 0.3 m (1 ft) below the lower ice waterline.	No additional rec class. See 3-1-2/7	juirements for ice Fable 2

Notes:

1 Includes bulkheads and decks attached to the external plating within 600 mm (23.5 in.) from the plating.

2 Excludes those portions covered by Note 1 above.

3 Above Area c for class **D0** excluding the bow area.

35.7 Criteria for ABS Grade Steels

For those rolled steel products in 2-1-2/Table 5 or 2-1-3/Table 5, the appropriate grade to be used for respective material class and thickness is shown in 6-1-1/Table 17a through 6-1-1/Table 17c. Where 3-1-2/3 results in a higher grade, such higher grade is to be used.

	Design Service Temperature				
Thickness in mm (in.)	0°C (32°F)	-10°C (14°F)	-20°C (-4°F)	-30°C (-22°F)	-40°C (-40°F)
<i>t</i> < 12.5 (<i>t</i> < 0.50)	A,AH	A,AH	A,AH	A,AH	B ⁽²⁾ ,AH
$12.5 < t \le 20 \ (0.50 < t \le 0.79)$	A,AH	A,AH	A,AH	B,AH	D,DH
$20 < t \le 25 \ (0.79 < t \le 0.98)$	A,AH	A,AH	B,AH	D,DH	D ⁽¹⁾ ,DH ⁽¹⁾
$25 < t \le 30 \ (0.98 < t \le 1.18)$	A,AH	A,AH	D,DH	D,DH	E,EH
$30 < t \le 35 (1.18 < t \le 1.38)$	A,AH	B,AH	D,DH	D,DH	E,EH
$35 < t \le 40 \ (1.38 < t \le 1.57)$	A,AH	D,DH	D,DH	D,DH	E,EH
$40 < t \le 51 \ (1.57 < t \le 2.00)$	B,AH	D,DH	D,DH	D,DH	E,EH

TABLE 17a Material Grades – Class I

Notes:

1

To be normalized.

2 May be "A" if fully killed.

TABLE 17b Material Grades – Class II

Design Service Temperature					
Thickness in mm (in.)	0°C (32°F)	-10°C (14°F)	-20°C (-4°F)	-30°C (-22°F)	-40°C (-40°F)
$t \le 12.5 \ (t \le 0.50)$	A,AH	A,AH	A,AH	B ⁽²⁾ ,AH	D,DH
$12.5 < t \le 20 \ (0.50 < t \le 0.79)$	A,AH	A,AH	B,AH	D,DH	D ⁽¹⁾ ,DH ⁽¹⁾
$20 < t \le 25 \ (0.79 < t \le 0.98)$	A,AH	B,AH	D,DH	D ⁽¹⁾ ,DH ⁽¹⁾	E,EH
$25 < t \le 30 \ (0.98 < t \le 1.18)$	A,AH	B,AH	D,DH	E,EH	E,EH
$30 < t \le 35 \ (1.18 < t \le 1.38)$	B,AH	D,DH	D,DH	E,EH	E,EH
$35 < t \le 40 \ (1.38 < t \le 1.57)$	B,AH	D,DH	D,DH	E,EH	E,EH
$40 < t \le 51 \ (1.57 < t \le 2.00)$	D,DH	D,DH	D,DH	E,EH	E,EH

Notes:

1 To be normalized.

2 May be A if fully killed.

TABLE 17c Material Grade – Class III

Design Service Temperature					
Thickness in mm (in.)	0°C (32°F)	-10°C (14°F)	-20°C (-4°F)	-30°C (-22°F)	-40°C (-40°F)
<i>t</i> < 12.5 (<i>t</i> < 0.50)	A,AH	A,AH	B ⁽²⁾ ,AH	D,DH	D ⁽¹⁾ ,DH ⁽¹⁾
$12.5 < t \le 20 \ (0.50 < t \le 0.79)$	A,AH	B,AH	D,DH ⁽¹⁾	D ⁽¹⁾ ,DH ⁽¹⁾	E,EH
$20 < t \le 25 \ (0.79 < t \le 0.98)$	B,AH	D,DH	D ⁽¹⁾ ,DH ⁽¹⁾	E,EH	E,EH
$25 < t \le 30 \ (0.98 < t \le 1.18)$	B,AH	D,DH	E,EH	E.EH	E,EH
$30 < t \le 35 \ (1.18 < t \le 1.38)$	D,DH	D,DH	E,EH	E,EH	
$35 < t \le 40 \ (1.38 < t \le 1.57)$	D,DH	D,DH	E,EH	E,EH	
$40 < t \le 51 \ (1.57 < t \le 2.00)$	D,DH	D,DH	E,EH	E,EH	

Notes:

1 To be normalized.

2 May be A if fully killed.

35.9 Criteria for Other Steels

35.9.1 Yield Strength Below 410 N/mm², (42 kgf/mm², 60 ksi)

Where steels other than those in 2-1-2/Table 5 or 2-1-3/Table 5 are intended, their specifications are to be submitted for approval. These steels are to comply with the following impact test requirements:

Yield Strength				
N/mm ²	(kgf/mm^2)	(ksi)		
235-305	(24-31)	(34-44)		
315-400	(32-41)	(45.5-58)		

CVN (Longitudinal)					
J	(kgf-m)	(ft-lbf)			
27	(2.8)	(20)			
34	(3.5)	(25)			

At the following temperatures:

Class I – design service temperature

Class II - 10°C (18°F) below design service temperature

Class III – 20°C (36°F) below design service temperature

35.9.2 Yield Strength 410-690 N/mm² (42-70 kgf/mm², 60-100 ksi)

Where steels of this strength level are intended, their specifications are to be submitted for approval. These steels are to comply with the impact test requirements of 34 J (3.5 kgf-m, 25 ft-1bf) at the following temperatures:

Design Service Temperature	Test Temperature		
0°C (32°F)	-30°C (-22°F)		
-10°C (14°F)	-40°C (-40°F)		
-20°C (-4°F)	-40°C (-40°F)		
-30°C (-22°F)	-50°C (-58°F)		
-40°C (-40°F)	-60°C (-76°F)		

35.9.3 Alternative Requirements

As an alternative to the requirements in 6-1-1/35.9.1 and 6-1-1/35.9.2, higher strength steels may comply with the following:

- *i)* For transverse specimens, $2/_3$ of energy values shown in 6-1-1/35.9.1
- *ii)* For longitudinal specimens, lateral expansion is not to be less than 0.5 mm (0.02 in.). For transverse specimens, lateral expansion is not to be less than 0.38 mm (0.015 in.).
- *iii)* Nil-ductility temperature (NDT), as determined by drop weight tests, is to be 5°C (9°F) below the temperature specified in 6-1-1/35.9.1.

35.11 Weld Metal

35.11.1 ABS Hull Steels

When the ABS ordinary and higher strength hull steels of 2-1-2/Table 5 or 2-1-3/Table 5 are applied in accordance with 6-1-1/Table 17a through 6-1-1/Table 17c, approved filler metals appropriate to the grades shown in Part 2, Appendix 3 may be used.

35.11.2 Criteria for Other Steels

For the welding of hull steels other than the ABS grades in 6-1-1/Table 17, weld metal is to exhibit a Charpy V-Notch toughness value at least equivalent to the transverse base metal requirements ($2/_3$ of longitudinal base metal requirements).

35.13 Inspection

In addition to the nondestructive inspection requirements of the other sections of the Rules, all intersections of full penetration welds within the ice belt structure, except the upper area of ice class vessels **A2** to **A5**, are to be inspected by radiographic or ultrasonic methods and are to meet the Class A requirements of the ABS *Rules for Nondestructive Inspection of Hull Welds*. Additional inspections may also be required by the Surveyor for other locations.

37 Weld Design (1997)

Weld design of hull construction is to comply with Section 3-2-19. Special attention is to be paid to welds in structures attached to side shell, such as transverse bulkheads, decks, frames, web frames and side shell stringers, within the ice belt, which are to be of double continuous weld.

39 Towing Arrangements

39.1 Bow

Every ice class vessel intended to be escorted by a higher ice class leading vessel, as given in 6-1-1/Table 1, is to be fitted with a tow chock pipe and a tow bitt on the bow. The chock and the bitt are to be properly connected to the stem frame. The portions of the decks at which the chock and the bitt are attached are to meet requirements of 6-1-1/25. The shell plating and framing below and 1.5 m (5 ft) around the chock are to be as required by 6-1-1/13 and 6-1-1/15 for the bow area of the ice belt for ice classes **A0**, **B0**, **C0** and **D0** and for the intermediate area of the ice belt for ice classes **A4** through **A1** and where coefficient C = 0.5. The stem frame below the connections with the chock is to be as required by 6-1-1/29.3 for the portion of the stem within the ice belt.

Where a bulbous bow is fitted, the bulb is not to extend beyond the fore end of the lower ice waterline specified by 6-1-1/5.5.

39.3 Stern

Vessels of ice classes **A5** through **A1** intended to be used as leading vessels assisting passage of a lower ice class vessel as specified by 6-1-1/Table 1 are to be equipped with a towing system. Both the arrangement of the towing system and the shape of the stern are to be suitable for towing the assisted vessel in immediate contact. The portion of the upper deck at which the towed vessel can contact is to be as required by 6-1-1/25. The shell plating and framing adjacent to this portion of the upper deck are to be as required by 6-1-1/13 and 6-1-1/15 for the stern area of the ice belt.

41 **Propeller Nozzles**

41.1 General

This Subsection applies to fixed nozzles. Special consideration will be given to steering nozzles for ice classes **A5** through **A0**. For ice classes **A5** through **A0**, the nozzles are to be supported at least at the upper and lower ends. For ice classes **B0**, **C0** and **D0**, the nozzles supported only at the upper ends are to be attached to the hull for a width of not less than 1/6 of the outer circumference of the nozzle. The strength, rigidity and resistance to buckling of the nozzle are to be adequate for the design ice forces given in 6-1-1/41.3. All of the critical loading cases are to be considered. In no case under the design ice forces are the normal and axial displacements of the inside ring to exceed 10% of the inside ring diameter, whichever is less. Nozzles are to be protected by stern structures as much as possible against direct impacts with large ice features.

41.3 Design Ice Forces

The design ice forces are to be not less than those obtained from the following equations:

$$F_n = K_1 K_2 (D \ d_1)^{1/2}$$
 kN (tf, Ltf)
$$F_f = K_3 K_4 [D \ (d_1 - d_2)]^{1/2}$$
 kN (tf, Ltf)

where

 F_n = the design ice force applied normal to the outside surface of the nozzle in the most critical location

- $K_2 = 1$ for the external sides of a single nozzle of a single screw vessel
 - = 1.1 for the outboard external sides of the outermost nozzles of vessels with two or more screws
 - = 0.25 for the external sides of nozzles situated between the outermost ones and for the internal sides of any nozzles
 - = 0.8 for bottoms of the nozzles
- D = ship displacement, in tonnes (long tons), as specified in 6-1-1/5.7
- d_1 = maximum outer diameter of the nozzle, in m (ft)
- d_2 = minimum internal diameter of the nozzle, in m (ft)
- F_f = the design ice force applied to the ends of the nozzle, parallel to the propeller axis, in the most critical locations
- $K_4 = 1$ for aft end face of the nozzle having no rudder behind
 - = 0.7 for the aft end face of the nozzle with a rudder behind
 - = 0.6 for the fore end face of the nozzle

 K_1 and K_3 are as given in 6-1-1/Table 18.

Values of K_2 and K_4 less than above will be approved, provided the stern and bottom hull structures effectively protect the nozzle against large ice fragments.

Les Class	K1	K_3
Ice Class	SI units (MKS, US)	SI units (MKS, US)
A5	55 (5.6, 3.1)	294 (30.0, 16.4)
A4	53 (5.4, 3.0)	286 (29.2, 16.0)
A3	49 (5.0, 2.7)	243 (24.8, 13.6)
A2	43 (4.4, 2.4)	188 (19.2, 10.0)
A1	32 (3.3, 1.8)	110 (11.2, 6.1)
A0	20 (2.1, 1.1)	59 (6.0, 3.3)
B0	13 (1.3, 0.7)	35 (3.6, 2.0)
C0	9 (0.9, 0.5)	22 (2.2, 1.2)
D0	7 (0.7, 0.4)	18 (1.8, 1.0)

TABLE 18 Design Ice Force Coefficient

41.5 Plate Thickness

The plate thickness of both inner and outer surfaces of the nozzle is to be not less than required by 6-1-1/13.1 for the stern ice belt area with coefficient C = 0.3. A value of C = 0 will be considered for a high abrasion-resistant coating of the nozzle. In this case, the results of operational experience information, required in the note to 6-1-1/Table 7, are to be submitted.

43 Rudder and Steering Arrangements

43.1 General (1993)

43.1.1 All Ice Classes, Multiple Rudders

Where two or more rudders are provided, they are to be mechanically independent.

43.1.2 Ice Classes A5 through A0 (2003)

43.1.2(a) Pintles. Rudders are to have at least two pintles.

43.1.2(b) Locking. Rudders are to be protected by strong and effective external rudder stops and provided with mechanical means of locking the rudder parallel to the centerline for use in the astern condition.

43.1.3 Ice Classes A5 through B0 (2003)

43.1.3(a) Ice Knife. Rudders are to be protected by ice knives or other similar structures located abaft the rudder. Clearance between the ice knife and the rudder is not to exceed 100 mm (4 in.)

43.3 Rudder Stocks, Couplings and Pintles (1993)

43.3.1 Ice Classes A5 through A1 (2003)

In addition to the requirements in Section 3-2-14, the rudder stocks, couplings and pintles are to meet the ice strengthening requirements, using equations in Section 3-2-14 in association with V_i , A_i and r_i , as defined below, in lieu of V, A, A_1 , A_2 , r, r_1 , and r_2 .

- V_i = the greater of V, as defined in Section 3-2-14, or the minimum design speed in 6-1-1/Table 19
- A_i = that part of the total projected area, A, A_1 or A_2 , as defined by Section 3-2-14, that is abaft the rudder stock centerline
- r_i = distance from the centerline of the rudder stock to the centroid of A_i

43.3.2 Ice Classes A0 through D0 (2003)

For ice classes **A0** through **D0**, rudder stocks, pintles, gudgeons and other bolting arrangements to the stern frames are to meet the requirements in Section 3-2-14 in association with V_i , as specified in 6-1-1/43.3.1.

TABLE 19Design Speed for Rudders, Couplings and Pintles (2003)

Ice Class	Minimum Design Speed, knots
A5	29
A4	29
A3	28
A2	26
A1	23
A0	20
В0	18
CO	16
D0	14

43.3.3 Ice Classes A5 through A0

The stresses in these members with the load F applied as follows are not to exceed the shear yielding strength which may be taken as 0.577 times the specified yield point of the material.

 $F = 2K_3(Dt)^{1/2}$ kN (tf, Ltf)

where

 $K_3 =$ as given in 6-1-1/Table 18

D = ship displacement, in tonnes (long tons), as specified in 6-1-1/5.7

t = thickness of the rudder, in m (ft), measured at the level of F and at 10% of the rudder length from the trailing edge.

F is to be applied to the after edge of the rudder in a direction parallel to the centerline of the vessel at all locations below the ice waterline within the middle 40% of the rudder height to determine the most severe requirements. Alternatively, F may be spread over any 60% of the rudder height as a uniform load. No other force need be considered simultaneously with F.

43.5 Double Plate Rudder

For double plate rudders, the minimum thickness of plates is to be not less than required by 6-1-1/41.5

45 Bossings

The bossings are to be designed to withstand the design ice forces F_n , as specified by 6-1-1/41.3, where d_1 is the diameter of the bossing. The bossing plating thickness is to be not less than required by 6-1-1/13.3 for the stern ice belt area, where s is the distance between stiffeners.

47 Machinery Arrangements

47.1 General

All machinery is to be suitable for operation under the environmental conditions to which it will be exposed in service and is to include all necessary special provisions for that purpose.

47.3 Governmental Authority

Attention is directed to the appropriate governmental authorities in the intended regions of operation for additional requirements in consideration of operation in ice such as fuel capacity, refueling capability, water capacity, radio communications requirements, etc.

47.5 **Propulsion Arrangements**

In addition to the regular governor, all propulsion engines and turbines are to be fitted with a separate overspeed device so adjusted that the speed cannot exceed the maximum rated speed by more than 20%.

47.7 Electric Propulsion

Propulsion motors are to be fitted with automatic protection against excessive torque, overloading and temperature. This protection is to automatically limit these parameters, but is not to cause loss of propulsion power.

47.9 Boilers

Vessels propelled by steam machinery are to be fitted with at least two boilers of equal capacity.

47.11 Protection Against Excessive Torques

For vessels of all classes, if torsionally flexible couplings or torque-limiting devices are fitted in the propulsion system, positive means are to be provided for transmitting full torque to the propeller in the event of failure of the flexible element. Ratings for flexible couplings are to be in accordance with 6-1-1/59. In addition, for vessels of classes **A5** through **A2**, couplings of the elastomer-in-shear type are not to be fitted in those portions of the propulsion system which are subject to shock loading from the propeller.

47.13 Vibration Analysis

Special consideration is to be given to ice-induced vibrations of the power train system for ice classes **A1** and above.

47.15 Sea Chests

For vessels of Ice Class **A0**, **B0**, **C0** and **D0**, at least one sea chest for supplying water for cooling and fire-fighting purposes is to be connected to the cooling-water discharge by a branch pipe having the same cross sectional area as the main pipe-line, in order to stay free from ice and slush ice. As far as practicable, the sea inlet chest is to be situated well aft, adjacent to the keel.

47.17 Cooling Water Arrangements

The following apply to vessels of ice classes **A5** through **A1**.

47.17.1 Sea Bay or Tank

The suctions for cooling water for all machinery essential to the propulsion of the vessel and for fire-fighting purposes are to be taken from a sea bay or tank located as close as practicable to the keel. The sea bay or tank is to be supplied with water from at least two independent sea suctions with at least one on each side of the hull. The area of each sea suction opening is to be not less than six times the total cross-sectional area of all pump suctions connected to the sea bay.

47.17.2 Sea Suctions

Suitable strainers are to be provided between the sea suctions and the sea bay. Valves are to be provided to permit isolation of the strainers, both from the sea suctions and from the sea bay. The cross-sectional area of such valves and strainers and associated piping for each sea suction is not to be less than the total cross-sectional area of all pump suctions connected to the sea bay.

47.17.3 Sea Water Pumps

Each sea water pump serving machinery essential to the propulsion of the vessel is to draw sea water directly from the sea bay. Design flow velocity in any suction line is not to exceed 2 m (6.6 ft) per second.

47.17.4 Cooling Water Recirculation

The discharge line from the cooling system is to be provided with suitable piping, valves and fittings to permit the discharge flow to be recirculated. The recirculation piping is to connect with the suction piping at a point on the seaward side of the strainer sea shut-off valves. Piping, valves and fittings for the recirculation line are to be of at least the same cross-sectional area as the overboard discharge line.

47.19 Starting-air System (1996)

For vessels of Ice Class **A5** through **A1**, in addition to the applicable requirements of 4-6-5/9, starting-air systems are to comply with the following.

- *i)* At least two independently driven starting-air compressors are to be provided. The total capacity of the compressors is to be sufficient to charge the air receiver from empty to maximum pressure in not more than 30 minutes.
- *ii)* The smallest of the starting air compressors is to have not less than two-thirds the capacity of the largest.

49 Materials for Propellers and Propulsion Shafting

Propeller materials are to be in accordance with the applicable requirements of 4-3-3/3 and 2-3-14/5.

In addition to the applicable requirements of 4-3-2/3, the material used in propulsion shafting is to have a Charpy V-notch impact value of not less than 20.5 J (2.1 kgf-m, 15 ft-lbf) at a temperature of -10° C (14°F) for all ice classes, except ice class **D0**. The propulsion shafts and couplings are to be made of steel.

51 Determination of Ice Torque for Propulsion Systems

The Ice Torque M for determining the dimensions of propellers and gears is to be in accordance with 6-1-1/Table 20 and associated notes. It is expected that a dynamic analysis of ice loads be carried out on classes **A5** through **A2**. The use of ice torques based on these analyses will be subject to special consideration.

53 Propellers

53.1 Propeller Arrangements

Propeller arrangements, the shape of the stern and the propeller protecting structures are to be adequate for the intended service. Special consideration is to be given to the propeller protection when moving astern. For **A5** through **A1** ice class vessels, the following condition is to be complied with.

$$0.5B_x - b_x \ge kd$$

where

- B_x = breadth of the lower ice waterline, as defined in 6-1-1/5.5, at the hull section in way of the propeller tips, in m (ft)
- b_x = distance from the vessel centerline to the outermost propeller blade tip, in m (ft)
- k = 0.25 for unducted propellers
 - = 0.10 for ducted propellers
- d = propeller diameter, in m (ft)

TABLE 20Value of Ice Torque M

Location of Propeller	Centerline	Off Centerline	
Propellers protected by nozzle			
Nozzle protected (see Note 1)			
class A5-B0	$0.75M_1$ (see Note 2)	$0.85M_1$ (see Note 2)	
class CO-DO	$0.85M_{1}$	$0.9M_1$	
Nozzle unprotected			
class A5-C0	$0.9M_1$ (see Note 3)	$0.9M_1$ (see Note 3)	
class D0	$0.9M_1$	$0.9M_1$	
Open propellers			
class A5-A2	M_{12}	$1.1M_{12}$ (see Note 4)	
class A1-D0	M_1	M_1	

 $M_1 = mD^2$, in kN-m (tf-m, Ltf-ft)

 $M_2 = kN/R$, in kN-m (tf-m, Ltf-ft)

 M_{12} = the greater of M_1 or M_2

m, k = value from 6-1-1/Table 21

D = propeller diameter, in m (ft)

N = Power at the maximum continuous rating, in kW (metric hp, British hp)

R = RPM at the maximum continuous rating

Notes

1

These requirements apply where the nozzle is well protected by ice knives, fins or other adequate stern arrangement from large ice fragments entering into nozzle from forward or backward motion of the vessel. These reductions are subject to special consideration.

2 To be not less than required for the second lower ice class.

3 To be not less than required for the next lower ice class.

4 Need not be greater than required for next higher ice class.

TABLE 21Values of m and k

Ice Class	m SI units	MKS units	US units	k SI units	MKS units	US units
A5	37.3	3.80	1.14	20.8	1.56	5.11
A4	35.4	3.60	1.08	19.1	1.43	4.68
A3	30.4	3.10	0.93	16.4	1.23	4.03
A2	25.5	2.60	0.78	14.0	1.05	3.44
A1	20.6	2.10	0.63	_	_	
A0	15.7	1.60	0.48	_	_	
В0	13.0	1.33	0.40			
C0	12.1	1.23	0.37			
D0	11.1	1.13	0.34			

53.3 **Propeller Section**

53.3.1 Width and Thickness

The thickness T and width W of propeller blade sections are to be obtained from the following equations:

~

• At the 0.25 radius for solid propellers

$$WT^2 = [a_1/U(0.65 + 0.7P_{0.25})] [(a_2CN/nR) + a_3M]$$
 cm³ (in³)

At the 0.35 radius for solid propellers with hubs larger than 0.25 propeller diameter ٠ $WT^2 = [a / U(0.65 \pm 0.7 P)] [(a C) / (a P) \pm a M]$ n^{3} (in³)

$$WT^2 = [a_4/U(0.65 + 0.7P_{0.35})][(a_2CN/nR) + a_5M]$$
 cm³ (in³)

At the 0.35 radius for controllable-pitch propellers •

$$WT^2 = [a_4/U(0.65 + 0.49P_{nominal})] [(a_2CN/nR) + a_5M] \text{ cm}^3 (\text{in}^3)$$

At the 0.6 radius for solid propellers ٠

$$WT^2 = [a_6/U(0.65 + 0.7P_{0.6})] [(a_2CN/nR) + a_7M]$$
 cm³ (in³)

At the 0.6 radius for controllable-pitch propellers •

$$WT^2 = [a_6/U(0.65 + 0.49P_{nominal})] [(a_2CN/nR) + a_7M] \text{ cm}^3 (\text{in}^3)$$

where

a_1	=	2650 (270, 27000)				
a_2	=	272 (200, 176)				
<i>a</i> ₃	=	22.4 (220, 59.134)				
a_4	=	2108 (215, 21500)				
a_5	=	23.5 (230, 61.822)				
a_6	=	932 (95, 9500)				
<i>a</i> ₇	=	28.6 (280, 75.261)				
W	=	expanded width of	a cylindrical section at the appropriate radius, cm (in.)			
Т	=	maximum thickness (in.)	s at the appropriate radius from propeller drawing, cm			
U	=	tensile strength of	propeller material, N/mm ² (kgf/mm ² , psi)			
Р	=		riate radius divided by the propeller diameter (for propellers, the nominal value of pitch is to be used)			
С	=	1	for $N \le 7,460$ kW (10,140 mhp, 10,000 hp)			
	=	$0.667 + \frac{N}{22380}$	for 7,460 kW < <i>N</i> < 29,840 kW			
	=	$0.667 + \frac{N}{30420}$	for 10,140 mhp < <i>N</i> < 40,560 mhp			
	=	$0.667 + \frac{N}{30000} \qquad \text{for 10,000 hp} < N < 40,000 \text{ hp}$				
	=	2	for $N \ge 29,840$ kW (40,560 mhp, 40,000 hp)			

N

n R M

=	as defined in 6-1-1/9.1, per propeller
=	number of blades
=	rpm at the maximum continuous rating
=	ice torque, as defined in 6-1-1/51

53.3.2 Blade Tip Thickness (1999)

The minimum blade thickness t_a , in mm (in.), at the tip of the blade (D/2) is to be determined from the following equations:

For Classes A5 through A1

$$t_a = (a_1 + a_2 D) \sqrt{a_3} / U$$
 mm (in.)

For Classes A0, B0, C0 and D0

$$t_a = (a_4 + a_2 D) \sqrt{a_3 / U}$$
 mm (in.)

where

a_1	=	20 (20, 0.787)
a_2	=	2 (2, 0.024)
<i>a</i> ₃	=	490 (50, 71000)
a_4	=	15 (15, 0.591)
D	=	propeller diameter, m (ft)
U	=	tensile strength of the propeller material, N/mm ² (kgf/mm ² , psi)

53.3.3 Blade Bolts

For built-up or controllable-pitch propellers, the cross sectional area of the bolts at the root of the thread is to be determined by the following equation:

$$\alpha = 0.082 UWT^2/U_b nr$$

where

α	=	area of each bolt at root of thread, in mm ² (in ²)
U	=	tensile strength of the propeller material, N/mm ² (kgf/mm ² , psi)
U_b	=	tensile strength of the bolt material, N/mm ² (kgf/mm ² , psi)
п	=	number of bolts on one side of blade (if <i>n</i> is not the same on both sides of the blade, the smaller number is to be used.)
r	=	radius of bolt pitch circle, in mm (in.)

W and T are as defined in 6-1-1/55, in mm (in.).

53.5 Additional Requirements

53.5.1 Rule Required Thickness

Where the blade thickness derived from the equations in 6-1-1/53.1 is less than the required thickness detailed in 4-3-3/5.1 through 4-3-3/5.7, the latter is to be used.

53.5.2 Other Sections

The thicknesses of propeller sections at radii intermediate to those specified are to be determined from fair curves connecting the required section thicknesses.

53.5.3 Blade Edges (1999)

The thickness of blade edges is not to be less than 50% of the required tip thickness t_a , measured at a point $1.25t_a$ from the leading edge for controllable-pitch propellers, and from each edge for solid propellers.

53.5.4 Controllable-pitch Propellers

The strength of the internal mechanisms of controllable-pitch propellers is to be at least 1.5 times that of the blade in the weakest direction of the blade for a load applied on the blade at the 0.9 radius and at an offset from the blade spindle axis equal to two-thirds the distance from the spindle axis to the leading or trailing edge (whichever is greater, as measured at the 0.9 radius).

53.5.5 Highly Skewed Propellers

Where highly skewed propellers are utilized, stress calculations considering both the ahead and astern operating conditions as well as the above ice loads are to be submitted for review.

53.7 Friction Fitting of Propeller Hubs and Shaft Couplings

Friction fitting of propeller hubs, shaft couplings or other torque transmitting components in those portions of the shaft line subject to shock loading from the propeller, is to have a factor of safety against slip considering both propulsion torque and ice torque of at least 2.4. Detailed stress and fitting calculations for all friction-fitted components are to be submitted for review. See 4-3-3/5.15.2(c).

55 **Propulsion Shafting Diameters**

The diameters of the propulsion shafts are to be not less than that obtained from the following equation:

$$d = k_o k_1 (WT^2 U/Y)^{1/3} \text{ cm (in.)}$$

where

- d = diameter of the shaft being considered, measured at its aft bearing, cm (in.)
- $k_o = 1.05$ for single-screw vessels of ice classes A5-A3
 - = 1.00 otherwise
- k_1 = as given in 6-1-1/Table 22
- W, T = actual values of the propeller blade width and thickness, defined in 6-1-1/53.3, and measured at the blade section at the 0.25 radius for solid propellers with the propeller hub not larger than 0.25D and at the 0.35 radius otherwise; in cm (in.)
- U = tensile strength of the propeller material, N/mm² (kgf/mm², psi)
- Y = yield strength of the shaft steel, N/mm² (kgf/mm², psi)

TABLE 22Propulsion Shaft Diameter Factor k_1

	Solid Prope	Solid Propellers with Hubs						
	Not Larger than 0.25D	Not Larger than 0.25D Larger than 0.25D and CPP's						
Tail shaft	1.08	1.15						
Tube shaft	1.03	1.10						
Intermediate shaft(s)	0.87	0.95						
Thrust shaft	0.95	1.01						

57 Reduction Gears (2006)

Pinions, gears and gear shafts are to be designed to withstand an increase in torque over that normally required for ice-free service. The following corrected ice torque (T_i) is to be utilized in Section 4-3-1.

$$T_i = T + C[MI_H R^2 / (I_L + I_H R^2)]$$

where

 T_i = ice corrected torque, N-m (kgf-cm, lbf-in)

T =torque corresponding to maximum continuous power, N-m (kgf-cm, lbf-in)

M = ice torque, as defined in 6-1-1/51, kN-m (tf-m, Ltf-ft)

 I_H = sum of mass moment of inertia of machinery components rotating at higher rpm (drive side)

R = gear ratio (pinion rpm/gear wheel rpm)

 I_L = sum of mass moment of inertia of machinery components rotating at lower rpm (driven side) including propeller with an addition of 30% for water

C = 1000 (100,000, 26800)

 I_H and I_L are to be expressed in the same units.

For calculations in Appendix 4-3-1A1, for diesel engine propulsion, $K_{Aice} = T_i/T$. If $K_{Aice} > K_A$ per 4-3-1A1/11, apply K_{Aice} . If $K_{Aice} < K_A$ per 4-3-1A1/11, apply K_A .

59 Flexible Couplings

Torsionally flexible couplings are to be selected so that the ice-corrected torque, as determined in 6-1-1/57, does not exceed the coupling manufacturer's recommended rating for continuous operation. When the rotating speed of the coupling differs from that of the propeller, the ice-corrected torque is to be suitably adjusted for the gear ratio. If a torque-limiting device is installed between the propeller and the flexible coupling, the maximum input torque to the torque-limiting device may be taken as the basis for selecting the coupling, in lieu of the ice-corrected torque. Flexible couplings which may be subject to damage from overheating are to be provided with temperature-monitoring devices or equivalent means of overload protection with alarms at each engine control station.

6

CHAPTER 1 Strengthening for Navigation in Ice

SECTION 2 Baltic Ice Classes

1 General

1.1 Application

Vessels to be distinguished in the *Record* by **Ice Class** followed by ice class **I AA** through **I C**, as specified in 6-1-2/3.1 are to meet the applicable requirements of this Section.

All vessels so designated are to be self-propelled and equipped with a radio telephone (VHF).

1.3 Northern Baltic Waters (<u>1 September 2003</u>)

The ice strengthening requirements in this Section are in agreement with the *Finnish-Swedish Ice Class Rules 1985*, as amended, developed for vessels trading in the Northern Baltic in winter.

3 Assignment of Ice Class

3.1 Ice Class (<u>1 September 2003</u>)

The requirements in this Section are intended primarily for vessels operating in the Northern Baltic in winter and are assigned to ice classes as follows:

- Ice Class I AA: vessels whose structural strength in essential areas affecting their ability to navigate in ice essentially exceeds the requirements of Ice Class I A and which as regards hull form and engine output are capable of navigation under difficult ice conditions;
- Ice Class I A, I B, I C: according to ice strengthening and engine output, vessels which meet the requirements for navigation in ice as regards structural strength and engine output and are strengthened for navigation in ice;

The administrations of Sweden and Finland (hereafter called the Administrations) provide icebreaker assistance to vessels bound for their ports in winter. Depending on the ice conditions, restrictions by the administrations may apply to the size and ice class of the vessel.

3.3 General Suitability for Operating in Ice

Where no specific requirements are given, vessels are assumed to be normal seagoing cargo vessels of conventional proportions, hull form and propulsion arrangement. A vessel having very unconventional proportions, hull form or propulsion arrangement, or any other characteristics, may have a lower ice class assigned by the Administrations.

3.5 General Suitability for Winter Conditions

These requirements are primarily for the vessel's capability to advance in ice. When designing structures, equipment and arrangements essential for the safety and operation of the vessel, other problems that may be encountered are to be taken into account.

In particular, the functioning of hydraulic systems, the freezing of water piping and tanks, starting of emergency diesels, low temperature strength of materials, etc. are to be considered in conjunction with the expected air temperature which will be well below $0^{\circ}C$ ($32^{\circ}F$) for much of the time and may occasionally go down to about - $30^{\circ}C$ (- $22^{\circ}F$).

5 **Definitions**

5.1 Ice Belt

The *Ice Belt* is the area over which the shell plating is required to be reinforced for navigation in ice, see 6-1-2/13.1 and 6-1-2/Figure 3.

5.3 Maximum Ice Class Draft Amidships

The *Maximum Ice Class Draft Amidships* is, in general, the Summer Fresh Water Load Line. Where the vessel has a Timber Load Line, the fresh water Timber Load Line in summer is to be used.

5.5 Load Waterline (<u>1 September 2003</u>)

The line defined by the maximum ice class drafts forward, amidships and aft is the *Load Waterline*, *LWL*. The line may be knuckled at amidships.

5.7 Ballast Waterline

The line defined by the minimum ballast drafts forward and aft will be referred to as the *Ballast Waterline*, *BWL*.

5.9 Main Frame

Main Frames are real, or in the case of longitudinal framing, imaginary transverse frames, whose spacing corresponds to that of the vessel clear of the ice strengthening area, or of the vessel if it were not ice-strengthened.

5.11 **Propulsion Machinery Output**

The *Propulsion Machinery Output*, P, is the maximum output in kW that the machinery can continuously deliver. If the output is restricted by technical means or by any regulations applicable to the vessel, P is to be taken as the restricted output.

7 Load and Ballast Waterlines

The load waterline, *LWL*, and the ballast waterline, *BWL*, are to be determined, clearly shown on the shell expansion plans and stated in the classification certificate.

The draft and trim limited by the *LWL* is not to be exceeded when navigating in ice. Sea water salinity along the intended route is to be considered when loading the vessel.

The vessel is always to be loaded to at least the BWL when navigating in ice. Any ballast tank situated above BWL and needed to load the vessel to this draft, is to be equipped to prevent the water from freezing in these tanks. In determining the BWL, consideration is to be given to the need to ensure a reasonable degree of ice-going capability in ballast. The propeller is to be fully submerged, if possible, entirely below the ice.

The minimum draft forward, d_f is to be not less than

$$d_f = (2 + 0.00025 \Delta)h_o$$
 m
 $d_f = (2 + 0.000254 \Delta)h_o$ ft

but need not exceed $4h_o$, where

- Δ = displacement of the vessel, in metric tons (long tons), at the maximum ice class draft, as defined in 6-1-2/5.3
- h_o = ice thickness, in m (ft), as defined in 6-1-2/11.5

9 Power of Propulsion Machinery (<u>1 September 2003</u>)

The minimum required engine output power P is to be determined in accordance with 6-1-2/9.1.2 and stated in the Classification certificate.

9.1 Propulsion Machinery Output, Ice Classes I AA, 1 A, I B and I C* (<u>1 September 2003</u>)

(*NOTE: For reference purposes, the propulsion machinery output requirements for IAA, IA, IB and IC in the 1985 Finnish-Swedish Ice Class Rules were amended as follows for vessels with the keel laid or which are at a similar stage of construction on or after 1 September 2003.)

9.1.1 Definitions

The dimensions of the vessel are defined below in 6-1-2/Figure 1, and are measured on the maximum ice class draft.

- L = length of the vessel between perpendiculars at the maximum draft, T, corresponding to the fresh water load line, m (m, ft)
- L_{BOW} = length of the bow, m (m, ft)

 L_{PAR} = length of the parallel midship body, m (m, ft)

B =maximum breadth of the vessel, m (m, ft)

T = actual ice class drafts of the vessel in accordance with 6-1-2/9.1.2. Drafts to be used are the maximum draft amidships corresponding to *LWL* and the minimum draft corresponding to *BWL*, m (m, ft)

$$A_{WL}$$
 = area of waterline of the bow, m² (m², ft²)

 H_F = thickness of the brash ice layer displaced by the bow, m (m, ft)

- H_M = thickness of the brash ice in mid channel, m (m, ft)
- α = the angle of the waterline at *B*/4, deg
- ϕ_1 = the rake of the stem at the centerline, deg
- φ_2 = the rake at the bow, at *B*/4, deg
- D_P = diameter of the propeller, m (m, ft)

FIGURE 1 Vessels' Dimensions

9.1.2 Power Calculation

To be entitled to ice class I AA, I A, I B or I C, a vessel the keel of which is laid or which is at a similar stage of construction on or after 1 September 2003 is to comply with the following requirements regarding its engine output. The engine output is to be not less than determined by the formula below and in no case less than 1000 kW (1360 mhp; 1341 hp) for Ice Class I A, I B and I C, and not less than 2800 kW (3807 mhp; 3754 hp) for Ice Class I AA.

$$P = K_C \frac{(R_{CH} / 1000)^{3/2}}{D_p}$$
 kW (mhp, hp)

Propeller Type or Propulsion Machinery	Controllable Pitch Propeller or Electric or Hydraulic Propulsion Machinery			Fixed Pitch Propeller		
	SI Units	MKS Units	US Units	SI Units	MKS Units	US Units
1 propeller	2.03	84.76	83.79	2.26	94.37	93.29
2 propellers	1.44	60.13	59.44	1.6	66.81	66.04
3 propellers	1.18	49.27	48.71	1.31	54.70	54.07

where K_C is to be taken as follows:

 R_{CH} is the resistance of the vessel in a channel with brash ice and a consolidated layer.

$$R_{CH} = C_1 + C_2 + C_3 C_{\mu} (H_F + H_M)^2 (B + C_{\emptyset} H_F) + C_4 L_{PAR} H_F^2 + C_5 \left[\frac{LT}{B^2}\right]^3 \frac{A_{WL}}{L} \quad \text{N (kgf, lbf)}$$

where

C_{μ}	=	$0.15\cos\varphi_2 + \sin\psi\sin\alpha$,	C_{μ} is to be taken equal or larger than 0.45
C_{\emptyset}	=	0.047ψ –2.115,	and $C_{\emptyset} = 0$ if $\psi \le 45^{\circ}$
H_F	=	$0.26 + (H_M B)^{0.5}$ m	
H_F	=	$0.85 + (H_M B)^{0.5}$ ft	
H_M	=	1.0 m (3.28 ft) for Ice Class	I A and I AA
	=	0.8 m (2.62 ft) for Ice Class	IB
	=	0.6 m (1.97 ft) for Ice Class	IC

The coefficients C_1 and C_2 take into account a consolidated upper layer of the brash ice and can be taken as zero for Ice Class I A, I B and I C.

For Ice Class I AA:

$$C_{1} = f_{1} \frac{BL_{PAR}}{(2T/B) + 1} + (1 + 0.021\varphi_{1})(f_{2}B + f_{3}L_{BOW} + f_{4}BL_{BOW})$$
 N (kgf, lbf)
$$C_{2} = (1 + 0.063\varphi_{1})(g_{1} + g_{2}B) + g_{3}(1 + 1.2T/B)\frac{B^{2}}{\sqrt{L}}$$
 N (kgf, lbf)

For a vessel with a bulbous bow, ϕ_1 is to be taken as 90°.

	SI units	MKS units	US units
f_1	23 N/m ²	2.35 kgf/m ²	0.48 lbf/ft ²
f_2	45.8 N/m	4.67 kgf/m	3.138 lbf/ft
f_3	14.7 N/m	1.50 kgf/m	1.007 lbf/ft
f_4	29 N/m ²	2.96 kgf/m ²	0.61 lbf/ft ²
g_1	1530 N	156.02 kgf	343.96 lbf
g_2	170 N/m	17.34 kgf/m	11.649 lbf/ft
g_3	400 N/m ^{1.5}	40.79 kgf/m ^{1.5}	15.132 lbf/ft ^{1.5}
<i>C</i> ₃	845 N/m ³	86.2 kgf/m ³	5.38 lbf/ft ³
C_4	42 N/m ³	4.28 kgf/m ³	0.267 lbf/ft ³
C_5	825 N/m	84.1 kgf/m	56.5 lbf/ft

 ψ = arctan[tan $\varphi_2/\sin \alpha$] deg.

The following is to apply:

$$20 \ge \left[\frac{LT}{B^2}\right]^3 \ge 5$$

9.1.3 Other Methods of Determining K_C and R_{CH}

The Administration may for an individual vessel, in lieu of the K_C or R_{CH} values defined in 6-1-2/9.1 above, approve the use of K_C and R_{CH} values based on more exact calculations or values based on model test. Such an approval will be given on the understanding that it can be revoked if experience with the vessel's performance in practice motivates this.

The design requirement for ice classes is a minimum speed of 5 knots in the following brash ice channels:

- **IAA** $H_M = 1.0 \text{ m} (3.28 \text{ ft}) \text{ and a } 0.1 \text{ m} (0.328 \text{ ft}) \text{ thick consolidated layer of ice}$
- **IA** $H_M = 1.0 \text{ m} (3.28 \text{ ft})$
- **IB** $H_M = 0.8 \text{ m} (2.62 \text{ ft})$
- IC $H_M = 0.6 \text{ m} (1.97 \text{ ft})$

11 Hull Structural Design

11.1 Application (<u>1 September 2003</u>)

The requirements for the hull scantlings are based on certain assumptions concerning the nature of the ice load on the structure. These assumptions are from full scale observations made in the Northern Baltic.

The local ice pressure on small areas can reach high values. This pressure may be well in excess of the normal uniaxial crushing strength of sea ice since the stress field is multi-axial.

It has also been observed that the ice pressure on a frame can be greater than on the shell plating at mid-spacing between frames. This is due to the different flexural stiffness of the frames and shell plating. The load distribution on the side structure is assumed to be as shown in 6-1-2/Figure 2.

As an alternative to the requirements of this Section, the hull structure may be obtained by direct engineering analysis subject to approval by the Administration.

Where the scantlings given by these requirements are less than those required by the Rules for a vessel unstrengthened for navigation in ice, the greater requirements are to apply.

11.3 Ice Strengthening Regions

For the application of this Section the vessel's ice belt is divided forward and aft into the following regions, see also 6-1-2/Figure 2.

FIGURE 3 Ice Strengthening Regions

11.3.1 Forward

From the stem to a line through the ice belt parallel to and 0.04L aft of the forward horizontal line of tangency of the parallel midbody, i.e., the forward end of the buttock line within the ice belt bounding the maximum beam. For ice classes **I AA** and **I A**, the overlap over the forward line of tangency need not exceed 6 m (19.7 ft); for ice classes **I B** and **I C**, this overlap need not exceed 5 m (16.4 ft).

11.3.2 Midship

From the aft boundary of the forward region to a line parallel to and 0.04L aft of the aft horizontal line of tangency of the parallel midbody, i.e., the aft end of the buttock line within the ice belt bounding the maximum beam. For ice classes **I AA** and **I A**, the overlap over the borderline need not exceed 6 m (19.7 ft); for ice classes **I B** and **I C**, this overlap need not exceed 5 m (16.4 ft).

11.3.3 Aft

From the aft boundary of the midship region to the stern.

11.5 Vertical Extent of Design Ice Pressure

An ice strengthened vessel is assumed to operate in open sea conditions with level ice thickness not exceeding h_o . The design height, h, of the area actually under ice pressure at any particular time is, however, assumed to be only a fraction of the ice thickness. The values for h_o and h are given in the following table:

Part	6	Optional Items and Systems
Chapter	1	Strengthening for Navigation in Ice
Section	2	Baltic Ice Classes

Ice Class	$h_o m (ft)$	h m (ft)
IAA	1.0 (3.28)	0.35 (1.15)
IA	0.8 (2.62)	0.30 (0.98)
IB	0.6 (1.97)	0.25 (0.82)
IC	0.4 (1.31)	0.22 (0.72)

11.7 Design Ice Pressure (<u>1 September 2003</u>)

The design ice pressure is to be not less than given by the following equation:

 $p = c_{d} \cdot c_{1} \cdot c_{a} \cdot p_{o}$ N/mm² (kgf/mm², psi)

where

k

 c_d = a factor for the influence of the size and propulsion machinery output of the vessel

= (ak+b)/1000

 $= \sqrt{n\Delta P} / 1000$

a and *b* are given in the following table:

		Re	egion		
	For	ward	Midship & Aft		
	$k \le 12$	k > 12	$k \le 12$	k > 12	
а	30	6	8	2	
b	230	518	214	286	

- n = 1.0 (1.0, 1.016)
- Δ = displacement of the vessel, in metric tons (long tons), at maximum ice class draft, as defined in 6-1-2/5.3
- P = the actual continuous propulsion machinery output, in kW, as defined in 6-1-2/5.11
- c_1 = factor for the probability that the design ice pressure occurs in a certain region of the hull for the particular ice class

The value of c_1 is given in the following table:

		Region					
Ice Class	Forward	Midship	Aft				
I AA	1.0	1.0	0.75				
IA	1.0	0.85	0.65				
I B	1.0	0.70	0.45				
IC	1.0	0.50	0.25				

 c_a = a factor for the probability that the full length of the area under consideration will be under pressure at the same time

 $c_a = (47 - 5\ell_a)/44$, maximum 1.0, minimum 0.6 SI & MKS units

$$c_a = (47 - 1.52\ell_a)/44$$
, maximum 1.0, minimum 0.6 US units

 ℓ_a is as given in the following table:

Structure	Type of framing	$\ell_a m (ft)$
Shell	Transverse	Frame spacing
	Longitudinal	2 times spacing of frame
Frames	Transverse	Frame spacing
	Longitudinal	Span of frame
Ice stringer		Span of stringer
Web frame		2 times spacing of web frames

 $p_o =$ the nominal ice pressure; the value 5.6 N/mm² (0.571 kgf/mm², 812 psi) is to be used

13 Shell Plating

13.1 Vertical Extent of Ice Strengthening

The vertical extension of the ice strengthening or the ice belt is given in the following table:

Ice class	Above LWL m (ft)	Below BWL m (ft)		
IAA	0.6 (1.97)	0.75 (2.46)		
IA	0.5 (1.64)	0.6 (1.97)		
IB	0.4 (1.31)	0.5 (1.64)		
IC	0.4 (1.31)	0.5 (1.64)		

In addition, the following areas are to be strengthened:

13.1.1 Fore Foot

For ice class **I AA**, the shell plating below the ice belt from the stem to a position five main frame spaces abaft the point where the bow profile departs from the keel line is to be at least the thickness required for the ice belt in the midship region.

13.1.2 Upper Forward Ice Belt (1 September 2003)

For ice class **I AA** and **I A**, on vessels with an open water service speed equal to or exceeding 18 knots, the shell plating from the upper limit of the ice belt to 2 m (6.56 ft) above it and from the stem to a position at least 0.2L abaft the forward perpendicular is to be at least the thickness required for the ice belt in the midship region.

Side lights, side scuttles etc., are not to be situated in the ice belt. If the weather deck in any part of the vessel is situated below the upper limit of the ice belt, i.e., in way of the well of a raised quarter decker, the bulwark is to be given at least the same strength as is required for the shell in the ice belt. The strength of the construction of the freeing ports is to meet the requirements for the bulwark.

13.3 Ice Belt Plating Thickness

With transverse framing, the thickness of the shell plating is to be not less than given by the following equation:

$$t = a \ s \ \sqrt{f_1 P_{PL} / \sigma_y} + t_c \qquad \text{mm (in.)}$$

With longitudinal framing, the thickness of the shell plating is to be not less than given by the following equation:

 $t = a \operatorname{s} \sqrt{P_{PL} / f_2 \sigma_y} + t_c \quad \operatorname{mm}(\operatorname{in.})$

where

frame spacing, in m (ft) S P_{PL} = 0.75 p, in N/mm² (kgf/mm², psi) as given in 6-1-2/11.7 = р $1.3 - 4.2/[(h/s) + 1.8]^2$; maximum 1.0 f_1 = 0.6 + 0.4/(h/s); when $h/s \le 1$ f_2 = 1.4 - 0.4 (*h*/*s*); when $1 \le h/s < 1.8$ f_2 = h as given in 6-1-2/11.5, in m (ft) = yield strength of the material, in N/mm² (kgf/mm², psi) σ_{v} = = 667 (8) а

Use of steels with yield strengths greater than 352 N/mm² (36 kgf/mm², 51000 psi) are subject to special consideration.

 t_c = increment for abrasion and corrosion, in mm (in.); normally, t_c is to be 2 mm (0.08 in.); however, if a special surface coating by experience is shown capable to withstand the abrasion of ice and is applied and maintained effective, lower values may be approved.

15 Framing

15.1 General

15.1.1 End Attachments

Within the ice strengthened area, all frames are to be effectively attached to all supporting structure by brackets (see 6-1-2/15.7). Frames are to be connected to transverse structure on both sides of the cut-out slots, i.e., the free edge of a slot is to be connected to the frame by a lug.

15.1.2 Frames

For Ice Class **I A** throughout, for ice class **I A** in the forward and midship regions and for ice classes **I B** and **I C** in the forward region, the following is to apply.

15.1.2(a) Slanted frames. Frames not at right angles to the shell are to be supported against tripping by brackets, intercostals, stringers or similar at a distance preferably not exceeding 1300 mm (51 in.)

15.1.2(b) Welding. Frames are to be attached to the shell by double continuous welding. Scallops are to be avoided, except where frames cross shell plate butts.

15.1.2(c) Web Thickness. The web thickness of the frames is to be at least one half of the thickness of the shell plating, but not less than 9 mm (0.35 in.). Where a deck, tanktop or bulkhead replaces a frame, this thickness is to apply for a depth corresponding to the depth of the adjacent frame.

6-1-2

15.3 Vertical Extent of Ice Strengthening (<u>1 September 2003</u>)

The vertical extent of the ice strengthening of framing is to be at least as given in the following table:

Ice Class	Region	Above LWL m (ft)	Below BWL m (ft)
ΙΑΑ	From stem to 0.3 L abaft stem	1.2 (3.94)	to double bottom or below top of floors
	Abaft 0.3 L from stem	1.2 (3.94)	1.6 (5.25)
	Midship	1.2 (3.94)	1.6 (5.25)
	Aft	1.2 (3.94)	1.2 (3.94)
I A, I B, I C	From stem to 0.3 L abaft stem	1.0 (3.28)	1.6 (5.25)
	Abaft 0.3 L from stem	1.0 (3.28)	1.3 (4.27)
	Midship	1.0 (3.28)	1.3 (4.27)
	Aft	1.0 (3.28)	1.0 (3.28)

Where an upper forward ice belt is required, see $6 - 1 - 2/13 \cdot 1$, the ice strengthening of the framing is to be extended at least to the top of this ice belt.

Where the ice strengthening would go beyond a deck or a tanktop by not more than 250 mm (9.8 in.), it may be terminated at that deck or tanktop.

15.5 Transverse Framing (<u>1 September 2003</u>)

15.5.1 Section Modulus

The section modulus, SM, of a main or intermediate frame is to be not less than that obtained from the equation:

$$SM = n[(psh\ell)/m_t\sigma_v] \qquad \text{cm}^3 (\text{in}^3)$$

where

п	=	10 ⁶ (1728)
σ_{y}	=	yield strength, as defined in 6-1-2/13.3, in N/mm ² (kgf/mm ² , psi)

- ice pressure, as given in 6-1-2/11.7, in N/mm² (kgf/mm², psi) = p
- = frame spacing, in m (ft) S
- h height of load area, as given in 6-1-2/11.5, in m (ft) =
- l = span of the frame, in m (ft)

$$m_t = 7m_o/[7-5(h/\ell)]$$

 m_{o} values are given in 6-1-2/Figure 4a.

The boundary conditions shown are for the main and intermediate frames. Possible different conditions for the main frames are assumed to have been taken care of by interaction between the frames and are reflected in the m_o values. The load is considered applied at mid span. Where less than 15% of the span, ℓ , of the frame is situated within the ice-strengthening zone for frames as defined in 6-1-2/15.3, ordinary frame scantlings may be used.

FIGURE 4a

15.5.2 Upper End of Transverse Frames

The upper end of an ice-strengthened part of a main frame and of an intermediate ice frame is to be attached to a deck or ice stringer, see 6-1-2/17.

Where an intermediate ice frame terminates above a deck or ice stringer that is situated at or above the upper limit of the ice belt, see 6-1-2/13.1, the part above the deck or stringer may have scantlings as required for an unstrengthened vessel and the upper end of the frame may be connected to the adjacent main frames by a header of the same scantlings as the main frame. Such an intermediate frame can also be extended to the deck above and if this is situated more than 1.8 m (5.9 ft) above the ice belt, the intermediate frame need not be attached to that deck, except in the Forward Region.

15.5.3 Lower End of Transverse Framing

The lower end of an ice-strengthened part of a main frame and of an intermediate ice frame is to be attached to a deck, tanktop or ice stringer, see 6-1-2/17.

Where an intermediate ice frame terminates below a deck, tanktop or ice stringer which is situated at or below the lower limit of the ice belt, see 6-1-2/13.1, the lower end of the frame may be connected to the adjacent main frames by a header of the same scantlings as the main frame.

15.7 Longitudinal Framing

The section modulus, SM, of a longitudinal frame is to be not less than that obtained from the equation:

$$SM = n(f_3 f_4 p_5 \ell^2 / m_1 \sigma_y) \qquad \text{cm}^3 (\text{in}^3)$$

The shear area, A, is to be not less than that obtained from the equation:

 $A = k \ (\sqrt{3}f_3 ps\ell/\sigma_v) \qquad \text{cm}^2 \ (\text{in}^2)$

This is applicable only if the longitudinal frames are attached to the supporting structure by brackets* as required in 6-1-2/15.1.

 f_3 = factor for the load distribution to adjacent frames

$$f_3 = (1 - 0.2h/s) (h/s)$$

 f_4 = factor for the concentration of load to point of support;

$$f_4 = 0.6$$

- p = ice pressure, as given in 6-1-2/11.7, in N/mm² (kgf/mm², psi)
- h =height of load area, as given in 6-1-2/11.5, in m (ft)
- s = frame spacing, in m (ft); the frame spacing is not to exceed 0.35 m (1.15 ft) for ice class **I AA** or **I A**, and is in no case to exceed 0.45 m (1.48 ft) *
- $n = 10^6 (1728)$
- $k = 5 \times 10^3 (72)$
- ℓ = span of frame, in m (ft)
- m_1 = boundary condition factor; m_1 = 13.3 for a continuous beam.
- σ_v = yield strength, as defined in 6-1-2/13.3, in N/mm² (kgf/mm², psi)
- * Alternatively, full compliance with the requirements as specified in the "Tentative Guidelines for Application of Direct Calculation Methods for Longitudinally Framed Hull Structure" issued by the Finnish Maritime Administration is considered to satisfy the Rule requirements.

17 Ice Stringers

17.1 Stringers within the Ice Belt (<u>1 September 2003</u>)

The section modulus, SM, of a stringer within the ice belt, (see 6-1-2/13.1) is to be not less than that obtained from the equation:

$$SM = n(f_5 ph\ell^2/m_s \sigma_v) \qquad \text{cm}^3 \text{ (in}^3)$$

The shear area, A, is to be not less than that obtained from the equation:

$$A = k \left(\sqrt{3} f_6 p h \ell / \sigma_v \right) \qquad \text{cm}^2 (\text{in}^2)$$

where

p = ice pressure, as given in 6-1-2/11.7, in N/mm² (kgf/mm², psi)

h = height of load area, as given in 6-1-2/11.5, in m (ft)

$$n = 10^6 (1728)$$

The product $(p \times h)$ is not to be taken as less than 0.3 SI units (0.0306 MKS units, 142.8 US units)

- $k = 5 \times 10^3 (72)$
- ℓ = span of stringer, in m (ft)
- m_s = boundary condition factor; m_s = 13.3 for a continuous beam
- f_5 = factor for distribution of the load on the transverse frames;
 - = 0.9 may be used for normal construction, but f_5 may also be obtained from the following equation:

$$f_5 = [1 - (d/118)] / [1 + (d/13)]$$

$$d = (\ell/\ell_f)^3 (\ell/s_f) (I_f/I)$$

- ℓ_f = span of transverse frames, in m (ft)
- $s_f = \text{frame spacing, in m (ft)}$
- I =moment of inertia of stringer, in cm⁴ (in⁴)
- I_f = moment of inertia of transverse frames, in cm⁴ (in⁴)
- f_6 = factor for distribution of the load on the transverse frames; f_6 = 0.9 may be used for normal construction, but f_6 may also be obtained from the following equation:

$$f_6 = \frac{1 + \frac{d}{16}n}{1 + \frac{d}{13}}$$

n = number of transverse frames supported by the stringer

 σ_v = yield strength, as defined in 6-1-2/13.3, in N/mm² (kgf/mm², psi)

17.3 Stringers Outside the Ice Belt

The section modulus, *SM*, of a stringer outside the ice belt that supports ice strengthened frames is to be not less than that obtained from the equation:

$$SM = \frac{f_7 \cdot p \cdot h \cdot \ell^2}{m_s \cdot \sigma_y} \left(1 - \frac{h_s}{\ell_s}\right) n \qquad \text{cm}^3 \text{ (in}^3)$$

The shear area, A, is to be not less than that obtained from the equation:

$$A = \frac{\sqrt{3}f_8 \cdot p \cdot h \cdot \ell}{\sigma_y} \left(1 - \frac{h_s}{\ell_s}\right) k \qquad \text{cm}^2 \text{ (in}^2)$$

where

$$p$$
 = ice pressure, as given in 6-1-2/11.7, in N/mm² (kgf/mm², psi)

h = height of load area, as given in 6-1-2/11.5, in m (ft)

$$n = 10^6 (1728)$$

The product $(p \times h)$ is to be not taken as less than 0.3 SI units (0.0306 MKS units, 142.8 US units).

$$k = 5 \times 10^3 (72)$$

$$\ell$$
 = span of stringer, in m (ft)

- m_s = boundary condition factor; m_s = 13.3 for a continuous beam
- ℓ_s = the distance to the adjacent ice stringer, in m (ft)
- h_s = the distance to the ice belt, in m (ft)
- f_7 = factor for the load distribution on transverse frames.

$$f_7 = (f_5 + 1)/2$$

- f_5 = as given in 6-1-2/17.1
- f_8 = factor for the load distribution on transverse frames

 $f_8 = (f_6 + 1)/2$

 f_6 = as given in 6-1-2/17.1

 σ_v = yield strength, as defined in 6-1-2/13.3, in N/mm² (kgf/mm², psi)

17.5 Deck Strips (<u>1 September 2003</u>)

The deck strips abreast of hatches serving as ice stringers are to comply with the section modulus and shear area requirements in 6-1-2/17.1 and 6-1-2/17.3, respectively. In the case of very long hatches, the product $(p \times h)$ may be taken as less than 0.3 SI units (0.0306 MKS units, 142.8 US units), but in no case less than 0.2 SI units (0.0204 MKS units, 95.2 US units).

In designing weather deck hatch covers and their fittings, special attention is to be paid to the deflection of the vessel's sides due to ice pressure in way of very long hatch openings.

19 Web Frames

19.1 Design Ice Load

The design load, *F*, on a web frame from an ice stringer or from longitudinal framing may be obtained from the following equation:

$$F = n f_6 phS$$
 kN (tf, Ltf)

where

 $n = 10^3 (0.0643)$

 f_6 = as given in 6-1-2/17.1 for loads from ice stringers and, for longitudinals, $f_6 = 1.0$

p = ice pressure, as given in 6-1-2/11.7, in N/mm² (kgf/mm², psi); in calculating c_a however, ℓ_a is to be taken as 2S

h = height of ice load area, as given in 6-1-2/11.5, in m (ft)

The product $(p \times h)$ is not to be taken as less than 0.3 SI units (0.0306 MKS units, 142.8 US units).

S =distance between web frames, in m (ft)

19.3 Section Modulus and Shear Area (<u>1 September 2003</u>)

When a web frame can be represented by the structural model shown in 6-1-2/Figure 4b, the section modulus and shear area may be obtained from the following equations:

• Shear area

$$A = (\sqrt{3}) n (k_1)(F)(\alpha) / \sigma_y$$
 cm² (in²)

where

$$k_{1} = 1 + (1/2)(\ell_{f}\ell)^{3} - (3/2)(\ell_{f}\ell)^{2}$$
 or

$$k_{1} = (3/2)(\ell_{f}\ell)^{2} - (1/2)(\ell_{f}\ell)^{3}$$
 whichever is greater

For the lower part of the web frame, the smallest value of ℓ_f within the ice belt is to be used. For the upper part, the greatest value of ℓ_f within the ice belt is to be used.

$$n = 10 (2240)$$

$$\alpha = \text{as given in the Table below}$$

$$\sigma_y = \text{yield strength, as defined in 6-1-2/13.3, in N/mm^2 (kgf/mm^2, psi)}$$

$$F = \text{as in 6-1-2/19.1}$$

- Section modulus

$$SM = nk_2 F\ell/\sigma_y \sqrt{1 - (\gamma A/A_a)^2}$$
 cm³ (in³)

where

$$k_2 = (1/2)(\ell_f/\ell)^3 - (3/2)(\ell_f/\ell)^2 + (\ell_f/\ell)$$

 γ = as given in the Table below

A = required shear area obtained using

$$k_1 = 1 + (1/2)(\ell_f/\ell)^3 - (3/2)(\ell_f/\ell)^2$$

 A_a = actual cross sectional area of the web frame, in cm² (in²)

n = 1000 (26880)

- Factors α and γ
 - A_f = cross section area of free flange, in cm² (in²)

 A_w = cross section area of web plate, in cm² (in²)

$A_f A_w$	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
α	1.5	1.23	1.16	1.11	1.09	1.07	1.06	1.05	1.05	1.04	1.04
γ	0	0.44	0.62	0.71	0.76	0.80	0.83	0.85	0.87	0.88	0.89

For web frame configurations and boundary conditions other than as given above, a direct stress calculation is to be carried out.

The concentrated load on the web frame is to be as given in 6-1-2/19.1. The point of application is in each case to be chosen in relation to the arrangement of stringers and longitudinal frames so as to obtain the maximum shear forces and bending moments.
The allowable stresses are as follows:

Shear Stress

$$\tau \leq \sigma_y / \sqrt{3}$$

Bending Stress

 $\sigma_b \leq \sigma_v$

• Equivalent Stress

$$\sigma_c = \sqrt{{\sigma_b}^2 + 3\tau^2} \le \sigma_y$$

21 Bow

21.1 Stem

The stem may be made of rolled, cast or forged steel or of shaped steel plates. A sharp edged stem, see 6-1-2/Figure 5, improves the maneuverability of the vessel in ice and is recommended particularly for smaller vessels with a length of less than 150 m (492.1 ft).

The thickness of a shaped plate stem and, in the case of a blunt bow, any part of the shell that forms an angle of 30 degrees or more with the center line in the horizontal plane, is to be obtained from the equation in 6-1-2/13.3 where

s = spacing of elements supporting the plate, in m (ft)

 $P_{PL} = p$, in N/mm² (kgf/mm², psi), see 6-1-2/11.7

 ℓ_a = spacing of vertical supporting elements, in m (ft)

Part	6	Optional Items and Systems
Chapter	1	Strengthening for Navigation in Ice
Section	2	Baltic Ice Classes

The stem and that part of a blunt bow defined above is to be supported by floors, breasthooks or brackets spaced not more than 0.6 m (1.97 ft) apart and of a thickness at least half the shell plate thickness. This reinforcement of the stem is to extend from the keel to a point 0.75 m (2.46 ft) above LWL, or where an upper forward ice belt is required, see 6-1-2/13.1, to the upper limit of this upper forward ice belt.

21.3 Arrangements for Towing

A mooring pipe with an opening not less than 250 mm (10 in.) by 300 mm (12 in.), a length of at least 150 mm (6 in.) and an inner surface radius of at least 100 mm (4 in.) is to be fitted in the bow bulwark at the centerline.

A bitt or other means for securing a towline, dimensioned to stand the breaking force of the towline of the vessel is also to be fitted. The deck in way of the bitt is to be suitably reinforced.

On vessels with a displacement not exceeding 30,000 metric tons (29,527 long tons), that part of the bow that extends to a height of at least 5 m (16.4 ft) above the *LWL* and at least 3 m (9.84 ft) aft of the stem is to be strengthened to take the stresses caused by fork towing. For this purpose, intermediate frames are to be fitted and the framing is to be supported by stringers or decks.

It is to be noted that, for vessels with a displacement not exceeding 30,000 metric tons (29,527 long tons), fork towing in many situations is the most efficient way of assisting in ice. Vessels with a bulb protruding more than 2.5 m (8.2 ft) forward of the forward perpendicular are often difficult to tow in this manner. The administrations reserve the right to deny assistance to such vessels if the situation so warrants.

23 Stern

An extremely narrow clearance between the propeller blade tip and the stern frame is to be avoided as this causes very high loads on the blade tips.

On twin and triple screw vessels, the ice strengthening of the shell and framing is to extend to the double bottom for 1.5 meters (4.92 ft) forward and aft of the side propellers.

Shafting and stern tubes of side propellers are to be normally enclosed within plated bossing. If detached struts are used, their design, strength and attachment to the hull is to be duly considered for ice loading.

A wide transom stern extending below the LWL will seriously impede the essential capability of the vessel to back in ice. Therefore a transom stern is not to be extended below the LWL, if this can be avoided. If unavoidable, the part of the transom stern situated within the ice belt is to be strengthened as for the midship region.

25 Bilge Keels

Bilge keels are prone to ice damage. The connection of bilge keels to the hull is to be so designed as to minimize the risk of damage to the hull in the case of a bilge keel being ripped off.

To limit damage when a bilge keel may be partly ripped off, it is recommended that bilge keels be fitted in several shorter independent lengths. The bilge keels are to comply with 3-2-2/13, except that the doubler may be either discontinuous with the bilge keel or continuous.

Special attention is to be given to details at the ends of the bilge keels. In general, the bilge keels are to terminate on an internal structural member in gradual *S* tapers and the shell doubler is to terminate in a reduced width taper with the end radiused.

27 Rudder and Steering Arrangements

27.1 Minimum Design Speed (1993)

The scantlings of rudder post, rudder stock, pintles, steering gear etc., as well as the capacity of the steering gear are to comply with Section 3-2-14 of the Rules. Where the design ahead speed of the vessel, as defined in 3-2-14/3.1, is less than the minimum speed indicated in the table below, the latter speed is to be used in lieu of V in Section 3-2-14.

Class	Minimum Speed
IAA	20 knots
IA	18 knots
IB	16 knots
IC	14 knots

For use with the minimum ahead speeds in the above table, k_c may be taken as 80% of that specified in Section 3-2-14. Also, k_1 for rudders situated behind nozzles need not be taken as greater than 1.0.

27.3 Double Plated Rudders

For double plated rudders, the minimum thickness of plates and horizontal and vertical webs in the ice-belt region is to be determined as for shell plating in the aft region in accordance with 6-1-2/13.

6-1-2

27.5 Rudder and Rudder Stock Protection

For the ice classes **I AA** and **I A**, the rudder stock and the upper edge of the rudder are to be protected against ice pressure by an ice knife or equivalent means.

27.7 Overload Design

For ice classes **I AA** and **I A**, due regard is to be given to the excessive loads caused by the rudder being forced out of the midship position when backing into an ice ridge. Also, relief valves for hydraulic pressure are to be effective. The components of the steering gear are to be dimensioned to withstand the yield torque of the rudder stock. Where possible, rudder stops working on the blade or rudder stock are to be fitted.

29 Determination of Ice Torque for Propulsion Systems (<u>1 September 2003</u>)

The dimensions of gears, shafting and propellers as determined from the following subsections take into account the impact that occurs when a propeller blade hits ice. The increased loading that results is designated the ice torque *M*, and is obtained from the following equation:

- $M = mD^2$ kN-m (tf-m, Ltf-ft)
- D = propeller diameter, m (ft)

m = value from the following table

Class	SI Units	MKS Units	US Units
I AA I	21.09	2.15	0.645
IA	15.69	1.60	0.480
IB	13.04	1.33	0.399
IC	11.96	1.22	0.366

If the propeller is not fully submerged when the vessel is in ballast condition, the ice torque for ice class | A | is to be used for ice classes | B | and | C.

31 Propellers

31.1 General (<u>1 September 2003</u>)

The elongation of the material used is not to be less than 19%, preferably less than 22% for a test piece length = 5d and the value for the Charpy V-notch test is not to be less than 21 J (2.1 kgf-m, 14.7 lbf-ft) at -10°C (14°F).

Where the vessel is fitted with a nozzle around the propeller, the propeller will be considered in accordance with the requirements for the next lower ice class than that requested for the vessel.

31.3 Propeller Section

31.3.1 Width and Thickness

The thickness T and width W of propeller blade sections are to be obtained from the following equations:

- At the 0.25 radius for solid propellers $WT^2 = [a_1/U(0.65 + 0.7P_{0.25})][(a_2H/NR) + a_3M]$ cm³ (in³)
- At the 0.35 radius for solid propellers with hubs larger than 0.25 propeller diameter

$$WT^2 = [a_4/U(0.65 + 0.7P_{0.35})] [(a_2H/NR) + a_5M]$$
 cm³ (in³)

• At the 0.35 radius for controllable-pitch propellers

$$WT^2 = [a_4/U(0.65 + 0.49P_{nominal})] [(a_2H/NR) + a_5M] \text{ cm}^3 (\text{in}^3)$$

• At the 0.6 radius for solid propellers

$$WT^2 = [a_6/U(0.65 + 0.7P_{0.6})] [(a_2H/NR) + a_7M]$$
 cm³ (in³)

• *At the 0.6 radius for controllable-pitch propellers*

$$WT^2 = [a_6/U(0.65 + 0.49P_{nominal})][(a_2H/NR) + a_7M]$$
 cm³ (in³)

where

$a_1 =$	2650 (270,	27,000)
---------	------------	---------

$a_2 =$	272 (200,	, 176)
---------	-----------	--------

- $a_3 = 22.4 (220, 59.13)$
- $a_4 = 2108 (215, 21, 500)$
- $a_5 = 23.5 (230, 61.822)$
- $a_6 = 932 (95, 9500)$
- $a_7 = 28.6 (280, 75.26)$
- W = expanded width of a cylindrical section at the appropriate radius, cm (in.)
- $T = \max$ maximum thickness at the appropriate radius from propeller drawing, cm (in.)
- U = tensile strength of propeller material, N/mm² (kgf/mm², psi)
- P = pitch at the appropriate radius divided by the propeller diameter (For controllable-pitch propellers, the nominal value of pitch is to be used)
- H =maximum continuous power, kW (mhp, hp)
 - = number of blades

N

- R = rpm at the maximum continuous rating
- M = ice torque, as defined in 6-1-2/29

31.3.2 Blade Tip Thickness

The minimum blade thickness t_a , in mm (in.), at the tip of the blade (D/2) is to be determined from the following equations:

For Class **I AA**

 $t_a = (a_1 + a_2 D) \sqrt{a_3 / U} \text{ mm (in.)}$

For Classes IA, IB, and IC

$$t_a = (a_4 + a_2 D) \sqrt{a_3 / U} \text{ mm (in.)}$$

where

a_1	=	20 (20, 0.787)
a_2	=	2 (2, 0.024)
<i>a</i> ₃	=	490 (50, 71,000)
a_4	=	15 (15, 0.591)
D	=	propeller diameter, m (ft)
U	=	tensile strength of the propeller material, N/mm ² (kgf/mm ² , psi)

31.5 Additional Requirements

31.5.1 Rule Required Thickness

Where the blade thickness derived from the equations in 6-1-2/31.3 is less than the required thickness detailed in 4-3-3/5.1 through 4-3-3/5.7, the latter is to be used.

31.5.2 Other Sections

The thicknesses of propeller sections at radii intermediate to those required by 6-1-2/31.3 are to be determined from fair curves connecting the required section thicknesses.

31.5.3 Blade Edges

The thickness of blade edges is not to be less than 50% of the required tip thickness t_a measured at a point $1.25t_a$ from the leading edge for controllable-pitch propellers, and from each edge for solid propellers.

31.5.4 Controllable-pitch Propeller Bosses (1 September 2003)

The strength of the internal mechanisms of controllable-pitch propellers is to be at least 1.5 times that of the blade when a load is applied at the radius 0.9D/2 in the weakest direction of the blade. Propellers subject to repeated impact loads will be specially considered.

31.5.5 Materials

Propeller materials are to be in accordance with 4-3-3/3 and 2-3-14/5.

33 Shafting and Reduction Gears

33.1 Line Shafts and Thrust Shafts

The diameter of line shafts and thrust shafts in external bearings, as determined by the appropriate equation in 4-3-2/5.1 through 4-3-2/5.5, is to be increased by at least 10% for Class I AA. No strengthening is required for Classes I A, I B and I C.

33.3 Tail Shaft

The diameter T_s of the tail shaft at the aft bearing is not to be less than that obtained from the following equation:

$$T_s = 1.08 \sqrt[3]{UWT^2} / Y$$

where

 T_s = required tail-shaft diameter, cm (in.) U = tensile strength of the propeller material, N/mm² (kgf/mm², psi) WT^2 = value derived for the propeller blade section at the 0.25 radius, see 6-1-2/31.3.1 Y = yield strength of the shaft material, N/mm² (kgf/mm², psi)

If the diameter of the propeller boss is greater than 0.25D, the tailshaft diameter T_s is to be determined from the following equation:

$$T_s = 1.15 \sqrt[3]{UWT^2 / Y}$$

where

 WT^2 = propeller section value derived from 6-1-2/31.3.1

 T_s , U, Y are as defined above.

33.5 Intermediate Shafts (<u>1 September 2003</u>)

The diameter of intermediate shafts and thrust shafts in external bearings are not to be less than:

 $d_i = 1.1 \cdot d_{Section 4-3-2}$ for ice class **I AA**.

No strengthening is required for ice classes **I A**, **I B** and **I C**, i.e., Section 4-3-2 requirements for shaft diameters are to be used.

33.7 Reduction Gears (2006)

Pinions, gears and gear shafts are to be designed to withstand an increase in torque over that normally required for ice-free service. The following ice-corrected (T_i) torque is to be utilized in Section 4-3-1 of the Rules.

$$T_i = T + C \left[M I_H R^2 / (I_L + I_H R^2) \right]$$

where

T_i	=	ice-corrected torque, N-m (kgf-cm, lbf-in) see Note
Т	=	torque corresponding to maximum continuous power, N-m (kgf-cm, lbf-in)
М	=	ice torque, as per 6-1-2/29, kN-m (tf-m, Ltf-ft)
R	=	gear ratio (pinion rpm/gear wheel rpm)

- I_H = sum of mass moment of inertia of machinery components rotating at higher rpm (drive side)
- I_L = sum of mass moment of inertia of machinery components rotating at lower rpm (driven side) including propeller with an addition of 30% for water.

$$C = 1,000 (100,000, 26,880)$$

 $(I_H \text{ and } I_L \text{ are to be expressed in the same units})$

Note: For Appendix 4-3-1A1, for diesel engine/turbine propulsion, $K_{Aice} = T_i/T$. If $K_{Aice} > K_A$ per 4-3-1A1/11, apply $K_{A.ice}$. If $K_{Aice} < K_A$ per 4-3-1A1/11, apply K_A .

35 Additional Ice Strengthening Requirements

35.1 Starting Arrangements

The capacity of the air receivers required for reversible propulsion engines is to be sufficient for at least twelve consecutive starts and that for non-reversible propulsion engines is to be sufficient for six consecutive starts of each engine.

If the air receivers supply systems other than starting the propulsion engines, the additional capacity of the receivers is to be sufficient for continued operations of these systems after the capacity for the required number of consecutive engine starts has been used.

The capacity of the air compressors is to be sufficient for charging the air receivers from atmospheric to full pressure in one hour. For a vessel with ice class **I AA** that requires its propulsion engines to be reversed for astern operations, the compressors are to be able to charge the air receivers in half an hour.

35.3 Sea Inlet Chests for Cooling Water Systems and Fire Main (1995)

The sea water system is to be designed to ensure a supply of water for the cooling water system and for at least one of the fire pumps when navigating in ice. For this purpose, at least one sea water inlet chest is to be arranged as follows.

35.3.1

The sea inlet is to be situated near the centerline of the vessel and well aft, if possible.

35.3.2

The sea chest volume is to be on the order of 1 cubic meter (35.3 cubic foot) for every 750 kW (1033 mhp; 1019 hp) propulsion engine output including the ship's service auxiliary engine output.

35.3.3

The sea chest is to be sufficiently high to allow ice to accumulate above the inlet pipe.

35.3.4

A cooling water discharge pipeline having full capacity discharge is to be connected to the sea chest.

35.3.5

The open area of the strainer plates is to be not less than four times the inlet pipe sectional area.

Where it is impractical to meet the requirements of 6-1-2/35.3.2 and 6-1-2/35.3.3 above, two smaller sea chests may be arranged for alternating the intake and discharge of the cooling water, provided 6-1-2/35.3.1, 6-1-2/35.3.4 and 6-1-2/35.3.5 above are complied with.

Heating coils, if necessary, may be installed in the upper part of the chest or chests.

The use of ballast water for cooling purposes while in the ballast condition may be acceptable as an additional means but is not to be considered a permanent substitute for the above required sea inlet chest or chests.

PART

CHAPTER

2 Vessels Intended to Carry Refrigerated Cargoes

CONTENTS

	Note:		cs is considered necessary as conditions of classification (i.e., y requirements). (See 6-2-1/5.3.)	
SECTION 1	Gen	eral		85
	1	Classif	fication	85
	3	Cross-	references	85
	5	Applica	ation	85
	7	Class	Notations	86
		7.1	Vessels Built Under Survey	86
		7.3	Vessels Not Built Under Survey	87
		7.5	RMC Notation for Existing Vessels	87
	9	Supple	emental Notations	88
		9.1	Controlled Atmosphere, & CA	88
		9.3	Controlled Atmosphere Installation, & CA (INST)	88
		9.5	Automatic Pallet Loading/Unloading System,	88
		9.7	Automatic or Semi-Automatic Side Loading System	88
		9.9	Fruit Carrier, (F)	88
	11	Alterna	ative Designs	88
	13	Definit	ions	89
		13.1	Direct Expansion	89
		13.3	Indirect Expansion	89
		13.5	Refrigerant	89
		13.7	Secondary Coolant	89
		13.9	Brine	89
		13.11	Refrigerating Machinery Spaces	89
		13.13	Refrigeration Unit	89
		13.15	Refrigeration System	
		13.17	Refrigerated Container	
		13.19	Controlled Atmosphere	
		13.21	Automatic Pallet Loading/Unloading System	
		13.23	Automatic or Semi-Automatic Side Loading System	
		13.25	Refrigerated Edible Bulk Liquid Tankers	90

		13.27	Cargo Containment System	
		13.29	Refrigerated Fish Carrier	91
SECTION 2	Plans	and Da	ata to be Submitted	93
	1	Hull Co	onstruction Drawings	93
	3	Refrige	erated Cargo Spaces	94
	5		eration System and Refrigeration Machinery	94
	7	Electric	cal Systems	95
	9	Instrun	nentation, Control and Monitoring Systems	95
	11	Cargo	Handling Equipment	96
		11.1	Cranes	96
		11.3	Derrick and Booms	96
		11.5	Cargo Elevators	
		11.7	Automatic Pallet Loading/Unloading System	
	13		atic or Semi-Automatic Side Loading System	
		13.1	Structural Plans	
		13.3	Electrical, Automation and Control	
	15	•	erated Porthole Cargo Container System	
	17	-	erated Integral Cargo Container System	
	19		lled Atmosphere	
	21	Refrige	erated Edible Bulk Liquid Tankers	98
	23	Refrige	erated Fish Carriers	99
	25	On Boa	ard Tests and Trials	99
SECTION 3	Hull C	onstru	ction	. 101
	1	Genera	al	101
		1.1	Applicable Rules	101
	3	Design	Considerations	
		3.1	Design Temperatures – Steel Boundary of Refrigerated Cargo Spaces	102
		3.3	Avoidance of Notches and Hard Spots in Steel Work .	102
		3.5	Air Tightness of Refrigerated Cargo Spaces	102
	5	Materia	als	103
		5.1	General	103
		5.3	Steel Grades	103
		5.5	Toughness of Steel	
		5.7	Areas Exposed to Low Temperatures	103
		5.9	Steel Grades for Areas Exposed to Low Temperature	103
		5.11	For Other Areas of Hull Construction	
	7	Hatch	Covers	104
	9		hell Doors	105
		9.1	General	105
		9.3	Side Loading Doors, Forming Part of the Deck and Sheer Strake	105

	11		on Supports and Fixtures within Refrigerated Spaces	106
	13		Arrangements for Cargo Securing Fittings within frigerated Cargo Spaces	106
	15	Sealing	of Doors and Access Hatches	106
	17	Tests a	and Inspections	106
SECTION 4	Cargo	Handli	ng Equipment	.107
	1	Optiona	al Certification	107
	3		ble Rules for Cranes, Derrick and Boom Cargo and Cargo Elevators	107
		3.1	Cranes	107
		3.3	Derrick Post and Boom	107
	5		atic Pallet Loading/Unloading System (& APLUS n)	108
		5.1	General	108
		5.3	Automatic Pallet Loading/Unloading System	108
		5.5	Structural Requirements for the Hold Pallet Guide Framework	108
		5.7	Lifting Gear Requirements	109
		5.9	Deck Houses	110
		5.11	Controls	110
		5.13	Emergency Stop Equipment	
		5.15	Hoist Units/Elevators	
		5.17	Traveling Units/Conveyors	
		5.19	Load Handling Devices	
		5.21	Electrical	
	7		Piping Arrangements atic or Semi-Automatic Side Loading System S or ₩ SASLS	
	9		for ₩ APLUS and ₩ ASLS or ₩ SASLS	110
	Defei		0	440
SECTION 5			Cargo Spaces	
	1		al	
	3	-	Considerations	
	5		on	
	7	-	ge and Side Shoring	
	9		culation and Ventilation	
	11		Gratings and Spar Decks	
	13	-	nd Drainage Arrangements	
	15		Passing Through Refrigerated Cargo Spaces	
	17	Tests a	Ind Inspections	126

SECTION 6	Refrig	eration Ma	chinery	129
	1	General		.129
	3	Design Cor	siderations	.129
		3.1 Des	ign Pressures	129
		3.3 Cap	pacity	130
	5	Refrigerant	s and Secondary Coolants	.131
	7	Materials a	nd Fabrication	.133
	9	Location an	d Access	.135
	11	Ventilation	of Refrigeration Machinery Space	.135
	13		rs	
	15	-	essels and Heat Exchangers	
			neral	
		15.3 Oil	Recovery Equipment	136
		15.5 Ref	rigerant Filters and Dryers	136
		15.7 Liqu	uid Receivers	137
		15.9 Exp	ansion Valves	137
		15.11 Eva	porators	137
		15.13 Brin	e Heater	137
	17	Safety Relie	ef Devices	.137
	19	Air Coolers		.139
	21	Cooling Gri	ds	.139
	23	Piping Syst	ems	.140
		23.1 Des	ign Considerations	140
		23.3 Cor	rosion Prevention and Insulation	141
		23.5 Val	ves and Fittings	141
	25	Tests and I	nspections	.142
		25.1 Cor	npressor	142
		25.3 Pre	ssure Vessels	142
		25.5 Pipi	ng	142
		25.7 Pun	nps	143
		25.9 Reli	ef Devices	143
SECTION 7	Ancill	ary System	IS	145
	1	Cooling Wa	ter Systems	.145
		1.1 Des	ign Considerations	145
		1.3 Pun	nps	145
		1.5 She	Il Connections	145
	3	Bilge and D	rainage Systems	.146
SECTION 8	Fire E	ctinguishir	ng Systems and Equipment	147
	1	•	Ces	
	3	• ·	n Machinery Spaces	
	5	-	Storage Space	
	.			/

SECTION 9 Electrical Systems149

1	Gener	al	149
3	Cable	Installation	149
5		cal Installation in Refrigerating Machinery Roon argo Hold	
7	Power	Supply	150
9	Transt	örmer	150
11	Syster	n Design	150
13	Testin	g and Inspection	151
	13.1	Motor Control Centers and Distribution Boards	151
	13.3	Motors	151
	13.5	Electrical Installation	151

SECTION 10 Instrumentation, Control and Monitoring153 1 3 5 Temperature Measuring Equipment154 Minimum Number of Sensors......154 5.1 5.3 Location of Sensors154 5.5 5.7 Accuracy, FSD (Full Scale Deflection) Range......155 7 CO₂ Measuring Equipment155 9 Instrumentation and Monitoring156 11 13 Automatic Controls......156 15 15.1 15.3 Control and Monitoring......156 15.5 15.7 Computer Based Systems157 15.9 Testing after Installation on Board157 17 TABLE 1 Instrumentation and Alarms159 SECTION 11 Ammonia Refrigeration System......161 1 3 Design Considerations......161 3.1

		3.11	Emergency Drainage of Ammonia Refrigeration Machinery Space	164
		3.13	Storage of Ammonia Cylinders	165
	5	Materia	als	166
	7	Person	nel Safety Equipment	166
	9	Safety	Devices	167
	11	Piping	Arrangements	167
	13	Electric	al	168
		13.1	General	168
		13.3	Equipment and Installation in Hazardous Area	168
	15	Instrum	nentation, Control and Monitoring	168
		15.1	General	168
		15.3	Ammonia Vapor Detection and Alarm System	168
		15.5	Instrumentation and Alarms	169
	17	Tests a	and Inspections	169
	TABLE	1 I	nstrumentation and Alarms	169
SECTION 12	Contro	olled A	tmosphere Systems	171
	1	Genera	al	171
	3	Design	Considerations	171
	5	Nitroge	n Generator Compressor	172
	7	Location and Access for Compartments Containing G Generating Equipment Gas and Compressed Air Piping System		
	9			175
		9.1	Installation	
		9.3	Valve and Fittings	175
	11	Safety	Relief Devices	176
	13	Cargo Spaces Under Controlled Atmosphere and Adjacent Spaces		176
		13.1	General	
		13.3	Pressure and Vacuum Considerations	177
		13.5	Bilge and Drainage Arrangements	177
		13.7	Ventilation	178
	15	Instrum	nentation, Control and Monitoring	178
		15.1	General	178
		15.3	Sampling	179
		15.5	Analyzing	179
		15.7	Precaution for Low Level of O ₂	180
		15.9	Monitoring and Alarm	180
	17	Electric	al	180
		17.1	General	180
		17.3	Power Supply	180
		17.5	Cable Penetration	181
	19	Ethyler	e and Carbon Dioxide Scrubbers	181
	21	Humidification Equipment		

		TABLE	1	Instrumentation and Alarms	185
SECTION	13	Refrig	erated	Cargo Container Carrier	
		1	Gener	al	
	3	Portho	le Refrigerated Cargo Container Carrier		
			3.1	Design Considerations	
			3.3	Ducts and Couplings	
			3.5	Air Coolers	
			3.7	Instrumentation, Control and Monitoring	
			3.9	Electrical	
			3.11	Automatic Control	
		5	Integra	al Refrigerated Cargo Container Carrier	189
			5.1	Design Considerations	
			5.3	Instrumentation, Control and Monitoring	190
			5.5	Electrical	
			5.7	Automatic Control	190
		7	Tests	and Inspections	190
			7.1	Porthole Refrigerated Cargo Container Carrier	190
			7.3	Integral Refrigerated Cargo Container Carrier	191
		TABLE	1	Instrumentation and Alarms	189
		TABLE	2	Instrumentation and Displays	190
SECTION 14		Refrig	erated	Edible Bulk Liquid Tanker	
		1	Gener	al	193
		3	Desigi	n Considerations	
		5	Hull S	tructure	194
	7	Cargo	Containment System		
			7.1	Cargo Tanks	
			7.3	Cargo Tank Protection	194
	9	Cargo	Loading and Unloading System		
			9.1	Cargo Piping	
			9.3	Cargo Pumps	
			9.5	Inert Gas System	195
		11	Refrig	eration System	195
		13	Ancillary Systems		
			13.1	Cargo Tank Sounding Arrangements	
			13.3	Cargo Tank Ventilation	
			13.5	Hold Space Bilge Arrangement	196
			13.7	Hold Space Ventilation Arrangements	
		15	Tests	and Inspections	196

Operations, Equipment and Procedures Manual......182

SECTION 15 Refrigerated Fish Carrier197					
	1	General			
	3	Design Considerations197			
	5	Materials197			
	7	Hull Structures			
	9	Refrigerated Cargo Spaces			
	11	Refrigeration System			
	13	Refrigerated Sea Water Tanks (RSW Tank)198			
	15	Plate Freezers			
	17	Tests and Inspections			
SECTION 16 Testing201					
	1	On Board Tests After Installation – (Commissioning)201 Performance Test203			
	3				
		3.1 Air Circulation and Fresh Air Ventilation203			
		3.3 Refrigeration Machinery and Insulation Test			

6

CHAPTER 2 Vessels Intended to Carry Refrigerated Cargoes

SECTION 1 General

Note: Text in *italics* is considered necessary as conditions of classification (i.e., compulsory requirements). (See 6-2-1/5.3.)

1 Classification

For details of the scope and condition of classification, refer to Part 1, Chapter 1. However, for cargo or container vessels carrying refrigerated cargo, when specific notation related to this capability is requested by the Owners or builders, the following requirements will also apply.

3 Cross-references (2004)

Where necessary, applicable requirements in the *Rules for Building and Classing Steel Vessels* have been cross-referenced. It should be understood that for vessels under 90 m (295 ft) in length, the corresponding requirements in the *Rules for Building and Classing Steel Vessels Under 90 meters (295 feet) in Length* are to be applied in lieu of those in the *Rules for Building and Classing Steel Vessels*. For integrated cargo and ballast systems for refrigerated edible bulk liquid tankers, see requirements in 5C-1-7/33.

5 Application

5.1

The requirements of this Chapter are applicable to steel vessels intended to carry refrigerated cargoes such as fruits, vegetables, meat, fish, or other perishable goods in the hold spaces, or in the case of edible bulk liquids, in cargo tanks under controlled temperature conditions and, where fitted, also at controlled atmosphere. These vessels, except in the case of the refrigerated edible bulk liquid tankers, may carry cargoes in bulk, break bulk or palletized in the hold spaces or in refrigerated containers of porthole or plug-in types.

5.3

There are a number of requirements in this Chapter which relate to the safety of the vessel and personnel onboard and therefore, regardless of the notations referred to in 6-2-1/7, are considered necessary as conditions of classification (i.e., compulsory requirements). These requirements, which are shown in Arial italics, are to be applied for all vessels intended to carry refrigerated cargoes.

5.5

The requirements of this Chapter are applicable to those features that are permanent in nature and can be verified by plan review, calculations, physical survey or other appropriate means.

5.7

The requirements of this Chapter are not applicable to the refrigeration system for a liquefied gas carrier, except for the applicable requirements pertaining to the refrigeration equipment for the reliquefaction plants, where fitted, nor to air conditioning systems or refrigeration systems for provision storage.

7 Class Notations

7.1 Vessels Built Under Survey

Vessels intended for the carriage of refrigerated cargoes, which comply with the requirements of the Rules, and which have been constructed, at the request of the Owners, under survey by the Surveyors, will be distinguished in the *Record* by one of the following notations, as appropriate, followed by the date of survey.

₩ RCC	Refrigerated Cargo Carrier
₩ RC(Hold No.)	Refrigerated Cargo Carrier - Some Holds Only
₩ RCCC	Refrigerated Cargo Container Carrier
₩ IRCC	Integral Refrigerated Container Carrier
₩ REBLT	Refrigerated Edible Bulk Liquid Tankers
₩ RFC	Refrigerated Fish Carrier

7.1.1 Vessels Carrying Cargo in Refrigerated Holds, & RCC

Where cargo is carried in refrigerated holds, the *Record* will give the number and state the capacity of the insulated cargo spaces which have been examined, the character of the insulation, a description of the refrigeration machinery and the associated system, the minimum design temperature of each zone attainable with the maximum design ambient and sea water temperature.

The conditions specified in the *Record* will be subject to verification by testing in the presence of Surveyors.

7.1.2 Vessels Carrying refrigerated Cargo in Some of the Cargo Hold(s), ♥ RC(Hold Number(s))

Where there are facilities provided onboard the vessel for carriage of refrigerated cargo in some of the cargo hold(s), the *Record* will give the refrigerated cargo hold number(s), the capacity and the characteristics of the insulation, description of the refrigeration machinery and the minimum design temperature attainable with the maximum design ambient and sea water temperatures.

The conditions specified in the *Record* are subject to verification by testing in the presence of Surveyors.

7.1.3 Vessels Carrying Cargo in Refrigerated Containers of Porthole Type, **& RCCC**

Where cargo is carried in refrigerated containers, individually cooled by the shipboard refrigerated machinery and the associated systems and, where fitted, the associated temperature monitoring and control system, the *Record* will give the number and average design thermal characteristics of the containers, description of the refrigeration machinery and the distribution system for refrigerating the individual containers (porthole type only).

The conditions specified in the *Record* are subject to verification by testing in the presence of Surveyors.

7.1.4 Vessels Carrying Cargo in Refrigerated Containers of Integral Type, **B IRCC**

Where cargo is carried in refrigerated containers of plug-in or integral types which has its own individually mounted refrigeration machinery, hence requiring shipboard electrical power supply and in some cases the cooling water supply for the condensers and, where fitted, the associated temperature monitoring and control system, the *Record* will give the total number of refrigerated containers onboard, the total design load in kW and the type of temperature monitoring and control system installed.

The conditions specified in the *Record* are subject to verification by testing in the presence of Surveyors.

7.1.5 Vessels Carrying Edible Liquids in Bulk in Refrigerated Cargo Tanks, & REBLT

Where edible products are carried in bulk in refrigerated cargo tanks cooled by their own shipboard refrigeration machinery and the associated system, the *Record* will give the cubic capacity and the maximum design pressure of the cargo tanks, the minimum permissible design temperature of the cargo, a description of the refrigeration machinery, the maximum design ambient and sea water temperatures.

The conditions specified in the *Record* will be subject to validation by testing in the presence of Surveyors prior to issuance of the certificate.

7.1.6 Vessels Carrying Fish in the Refrigerated Cargo Holds, **B RFC**

Where fish processing or fish storage vessels are provided with facilities for chilling, cooling, or freezing and/or storage in the refrigerated cargo holds cooled by their own shipboard refrigeration machinery and the associated system, the *Record* will give the number and state capacity of the insulated cargo spaces which have been examined, the character of the insulation, a description of the refrigeration machinery and the associated system, the minimum design temperature of each space attainable with the maximum design ambient and sea water temperature.

The conditions specified in the *Record* will be subject to verification by testing in the presence of Surveyors.

7.3 Vessels Not Built Under Survey

Vessels intended for the carriage of refrigerated cargoes, which have not been constructed under survey by the Surveyors, but which have been subsequently surveyed at the request of the Owners, satisfactorily reported upon by the Surveyor, and which comply with the requirements of this Chapter, will be distinguished in the *Record* by one of the notations listed in 6-2-1/7.1, as appropriate, but the mark \mathbf{A} signifying survey during construction will be omitted.

7.5 RMC Notation for Existing Vessels

Existing vessels intended for the carriage of refrigerated cargoes, which have not been constructed and installed under survey to this Bureau, and which do not fully meet the requirements in this Chapter, but which are submitted for classification, will be subject to special classification survey. The refrigerated cargo holds and refrigeration machinery of such vessels are to comply with Part 4, Section 12 of the *Rules for Building and Classing Steel Vessels* (1997 edition). Where found satisfactory and thereafter approved by the Committee, they will be classed and distinguished in the *Record* by symbol **RMC**.

6-2-1

9 Supplemental Notations

9.1 Controlled Atmosphere, & CA

At the request of the Owner or the builder, refrigerated cargo vessels fitted with equipment and systems including the associated safety features which have been constructed and installed for compliance with the requirements of Section 6-2-12 will be distinguished in the *Record* $\mathbf{X} \mathbf{CA}$ (date of survey).

9.3 Controlled Atmosphere Installation, & CA (INST)

At the request of the Owners or builders, refrigerated cargo vessels fitted with a permanently installed piping system and the associated safety features and which is ready for connection to the portable controlled atmosphere generating equipment which has been constructed and installed for compliance with the requirements of Section 6-2-12 will be distinguished in the *Record* \bigstar CA (INST).

9.5 Automatic Pallet Loading/Unloading System, & APLUS

At the request of the Owners or builders, refrigerated cargo vessels fitted with a system whereby the cargo is loaded and unloaded to and from the refrigerated hold spaces through an automatic pallet handling, stacking and securing system together with a monitoring and control system which indicates the status of the pallets during the loading/unloading operation and having been constructed and installed in compliance with the applicable requirements will be distinguished in the *Record* **X APLUS**.

9.7 Automatic or Semi-Automatic Side Loading System & ASLS or & SASLS

At the request of the owner or the builder, refrigerated cargo vessels fitted with a system whereby the cargo is loaded and unloaded to and from the refrigerated hold spaces through an automatic or semi-automatic side loading pallet handling system together with monitoring and control system which indicates the status of pallets during loading/unloading operation and having been constructed and installed in compliance with the applicable requirements will be distinguished in the *Record* \bigstar ASLS or \bigstar SASLS.

9.9 Fruit Carrier, (F)

At the request of the Owner or the builder, refrigerated cargo or container vessels intended for the carriage of fruit which have been constructed and installed in compliance with the applicable requirements will be distinguished in the *Record* (**F**).

11 Alternative Designs

11.1

Equipment designed and constructed to alternative national or international standards to those referred to in the Rules will be considered for acceptance based on the requirements of 1-1-4/7.

11.3

Where the design of the installation contains new features which have not been addressed in the Rules, these will be the subject of special consideration upon receipt of the details such as drawings, data, calculations and, where considered necessary, analysis.

11.5

Refrigerants other than those mentioned in the Rules may be used, provided they are considered to be adequate for use in shipboard applications in accordance with national or international standards, international treaties adopted by the government(s) and the flag states or other similar legislation laid down by the flag state.

For the purpose of class, details such as the chemical properties, toxicity, flammability, together with the supporting data are to be submitted for review.

13 Definitions

13.1 Direct Expansion

A refrigeration system, in which the refrigerant expansion occurs through the direct absorption of heat from the primary medium to be cooled.

13.3 Indirect Expansion

A refrigeration system in which a secondary coolant is cooled by the direct expansion of a primary refrigerant and is then circulated to cool the medium which absorbs heat from the space to be cooled.

13.5 Refrigerant

The fluid used for heat transfer in a refrigeration system, which absorbs heat at a low temperature and low pressure of the fluid and rejects heat at a higher temperature and higher pressure of the fluid, usually involving a change of state of the fluid during the process.

13.7 Secondary Coolant

A liquid used for the transmission of heat, without a change of state, and having either no flash point or a flash point above 66°C (150°F).

13.9 Brine

Brine is a term given to secondary coolants which are water solutions of calcium chloride, sodium chloride and magnesium chloride.

13.11 Refrigerating Machinery Spaces

Refrigerating Machinery Spaces are spaces dedicated for housing refrigerating machinery and the associated equipment.

13.13 Refrigeration Unit

A *Refrigeration Unit* is the machinery comprising the compressor, the compressor's driving motor and a condenser, if fitted, independent of any other refrigeration machinery for provision stores or the air conditioning plant. In indirect refrigeration systems, the refrigeration unit also includes a brine or other secondary coolant cooler.

13.15 Refrigeration System

A *Refrigeration System* comprises one or more refrigeration units, together with the piping and ducting system as well as the equipment necessary for cooling the cargo and maintaining it at the required temperature.

6-2-1

13.17 Refrigerated Container

A portable container designed and constructed to a recognized international standard and primarily intended for carrying refrigerated cargo, and which is adequately insulated to reduce heat loss through the boundary walls and made air tight through effective seals.

There are two types of refrigerated containers referred to in this Chapter:

13.17.1 Port Hole Containers

The refrigerated containers where the cargo contained therein is cooled by cold air circulated by the vessel's refrigeration system through flexible connections.

13.17.2 Integrated or Plug-in Containers

The refrigerated containers which are fitted with an individual refrigeration unit either permanently installed or portable and requiring an electrical power supply, and where necessary, a cooling water supply from the vessel.

13.19 Controlled Atmosphere

For purposes of the Rules, a *Controlled Atmosphere* is where the oxygen concentration in the cargo space is reduced and the CO_2 concentration adjusted to the required levels by the introduction of high purity nitrogen or other suitable gas. The oxygen and CO_2 concentrations within the cargo space are then monitored and controlled throughout the loaded voyage.

13.21 Automatic Pallet Loading/Unloading System

An *Automatic Pallet Loading/Unloading System* is one that is intended to load from the quay side, stows within the hold, and unloads pallets. A stacking system is fitted within the holds, consisting of conveyors, transporters or other similar means together with the control equipment and lifting appliances for use to maneuver the pallets automatically.

13.23 Automatic or Semi-Automatic Side Loading System

An *Automatic or Semi-Automatic Side Loading System* is one that is intended to load from the quay side and deliver the pallets to the appropriate refrigerated hold using hoists, cranes, conveyors or other similar means together with the control equipment for use in maneuvering the pallets automatically or semi-automatically.

13.25 Refrigerated Edible Bulk Liquid Tankers

Tankers carrying refrigerated edible bulk liquid which is required to be maintained at a pre-specified temperature by means of the refrigeration system fitted on board the vessel.

13.27 Cargo Containment System

The *Cargo Containment System* for the carriage of edible bulk liquid cargoes referred to in 6-2-14/7 may consist of cargo tanks as below:

13.27.1 Integral Tanks

Integral Tanks mean a cargo containment envelope which forms part of ship's hull structure and which may be stressed in the manner and by the same loads which stress the contiguous hull structure and which is normally essential to the structural completeness of the ship's hull.

13.27.2 Independent Tank

An *Independent Tank* means a cargo containment envelope which is not contiguous with, or part of, the hull structure.

13.27.3 Gravity Tank

Gravity Tank means a tank having a design pressure not greater than 0.7 bar gauge at the top of the tank. A gravity tank may be an independent or integral tank.

13.27.4 Pressure Tank

Pressure Tank means a tank having a design pressure greater than 0.7 bar gauge. A pressure tank is to be an independent tank.

13.29 Refrigerated Fish Carrier

Fish processing vessels, fishing vessels and mother ships of fishing fleet which are provided with facilities for freezing fish and fish products.

This Page Intentionally Left Blank

PART

6

CHAPTER 2 Vessels Intended to Carry Refrigerated Cargoes

SECTION 2 Plans and Data to be Submitted

1 Hull Construction Drawings

General Arrangement Capacity Plan **Midship Section** Framing Plan Scantling profile and decks Bottom Construction, floors, girders, etc. Inner bottom plating Shell expansion Deck plans Pillars and girders Watertight and deep tank bulkheads Miscellaneous non-tight bulkheads used as structural supports Shaft tunnel Machinery casings, engine and main auxiliary foundations Fore end construction Aft end construction Stern Frame and rudder Shaft struts Superstructures and deckhouses and their closing appliances Hatches and hatch closing arrangements Side Shell Door - Construction and locking and sealing arrangements Ventilation systems on weather decks

Part6Optional Items and SystemsChapter2Vessels Intended to Carry Refrigerated CargoesSection2Plans and Data to be Submitted

6-2-2

Anchor handling arrangements

Foundation structure for cranes and other lifting devices

Plan of hull showing steel grades

Cargo securing manual

For stability review:

- Lines and body plan
- Hydrostatic curves
- Cross curves
- Stability information

Additional plans for container ships

- Stowage arrangement of containers including stacking loads
- Location of container supports and their connection to hull

3 Refrigerated Cargo Spaces

Details of insulation installation including density, K factor, etc.

Details of the fixing arrangements for the load bearing supports of the insulation and linings, and of all other insulation support fittings embedded by the insulation.

Details of the weld designs for the attachment of the fittings to the vessel's structure

Proposed arrangements for fixing insulation to the vessel's structure

Details of the fasteners used for supporting pipework embedded in insulation.

Cargo space heating arrangements (where fitted)

Corrosion protection of the steel structure

Temperature gradient calculations

5 Refrigeration System and Refrigeration Machinery Spaces

Design pressure and temperature of the refrigeration system

Details of the refrigerant and secondary coolant

Heat-load calculations and refrigeration capacity, including rate of ventilation of the cargo spaces, where applicable.

Details of the compressors, prime-mover drive, condensers, receivers, pumps, thermostatic expansion valves, oil recovery equipment, filters and dryers, evaporators and other pressure vessels and heat exchangers

Piping diagrams of refrigerant, brine and condenser cooling system

Details of the air-coolers, including corrosion protection

General arrangement of refrigeration units, indicating location

Ventilation details of refrigeration machinery spaces, including ventilation rates

Capacity calculations for all of the pressure vessel safety relief valves

Details of the safety relief devices discharge piping, including design calculations

Corrosion protection of the refrigerant and brine pipes

Cargo hold defrosting arrangements

Drainage and bilge pumping arrangements

Location and types of portable fire extinguishers

Additional plans and data for the ammonia refrigeration system:

- Access arrangement to the refrigeration machinery spaces
- Details of the emergency ventilation system
- Details of the emergency drainage system
- Details of the sprinkler system and water screen devices
- Fixed ammonia detection system
- Details of the personnel safety equipment

7 Electrical Systems

Electrical one line wiring diagram for refrigeration machinery

Power supply and distribution

Arrangements of electrical equipment and cable way in refrigerating machinery spaces and refrigerated cargo holds including cable penetrations of insulated bulkheads and decks

Arrangements of thermometers in refrigerated cargo spaces

Heat tracing arrangements, where fitted

9 Instrumentation, Control and Monitoring Systems

Control and monitoring panels for refrigerating machinery including schematic diagrams, function description, construction plans and outline view

Operational description of automatic or remote control and monitoring systems including a list of alarms and displays

Computer-based systems are to include a block diagram showing system configuration including interface, description of hardware specifications, fail safe features and power supply

Control and monitoring

Temperature measuring system

Refrigerant leakage detection and alarm system

O₂ and CO₂ content measuring system

Ammonia vapor detection and alarm system

6-2-2

11 Cargo Handling Equipment

11.1 Cranes

Where certification is requested, then the drawing submittal is to be in accordance with Chapter 2, "Guide for Certification of Cranes" of the ABS *Guide for Certification of Lifting Appliances*.

- For Crane Structure: as per 2-1/3.3.1 of the above mentioned Guide
- For Crane Machinery, Piping and Electric Systems: as per 2-1/3.3.2 of the above mentioned Guide

11.3 Derrick and Booms

The drawing submittal is to be in accordance with Chapter 3, "Guide for Certification of Cargo Gear on Merchant Vessels" of the ABS *Guide for Certification of Lifting Appliances*.

11.5 Cargo Elevators

Where certification is requested, then the drawing submittal is to be in accordance with Chapter 2, "Guide for Certification of Cranes" of the ABS *Guide for Certification of Lifting Appliances*, as applicable.

- For Structure: as per 2-1/3.3.1 of the above mentioned Guide
- For Machinery, Piping and Electric Systems: as per 2-1/3.3.2 of the above mentioned Guide

11.7 Automatic Pallet Loading/Unloading System

11.7.1 Structural Plans

Stowage arrangement for pallets including stacking loads

Location of guide supports

Guide arrangement, scantlings, material grades and details

Details of the structural connections to the hull (including insulation)

Track, foundation and support structure for the lifting devices

Pallet securing arrangement and scantling plan

Deck openings, framing and closing appliance

Deckhouse

Operating manual

11.7.2 Electrical, Automation and Control

Rated load, rated speed and operating condition

Electric power installation including motor, control, wiring and protective devices

Details of controls, interlock, safety devices and brakes

Control and monitoring panels including schematic diagrams, function description, construction plans and outline view

Hydraulic and control piping system details

Arrangements for emergency operations

13 Automatic or Semi-Automatic Side Loading System

13.1 Structural Plans

Location of guide supports

Guide arrangement, scantlings, material grades and details

Details of the structural connections to the hull (including insulation)

Track, conveyors, foundation and support structure for the lifting devices

Deck openings, framing and closing appliance

Deck and Side shell openings, framing and reinforcement details, details of the closing appliances, locking and sealing arrangements

Deckhouse

Operating manual

13.3 Electrical, Automation and Control

Rated load, rated speed and operating condition

Electric power installation including motor, control, wiring and protective devices

Details of controls, interlock, safety devices and brakes

Control and monitoring panels including schematic diagrams, function description, construction plans and outline view

Hydraulic and control piping system details

Arrangements for emergency operations

15 Refrigerated Porthole Cargo Container System

Number and overall heat transfer rates of insulated cargo containers to be individually cooled by shipboard refrigeration system

Space heating arrangements for cargo cells

Details of the air ducting

Air circulation rates

Details of the flexible coupling, together with means of actuation

17 Refrigerated Integral Cargo Container System

Cooling water arrangements

Air freshening (ventilation) arrangements for cargo cells

6-2-2

19 Controlled Atmosphere

Capacity calculation for the nitrogen plant Arrangements for controlling the CO_2 in cargo hold Details of CO₂ and ethylene scrubber Details of compressors and prime-movers Details of the pressure vessels and heat exchangers General arrangement of nitrogen generation plant, indicating location and access Ventilation details of nitrogen generator space Piping system, arrangement and details Arrangements to render cargo spaces gas tight; to include details of liquid sealed traps Arrangements for pressure and vacuum relief in cargo spaces Ventilation arrangements, for designated controlled atmosphere spaces, and adjacent spaces Schematic diagram of control and monitoring systems One line electrical wiring diagram and details of the power supply Details of the gas analyzing system A list of alarms and displays Details of the humidification system Details of personnel safety equipment Operations, equipment and procedure manual

21 Refrigerated Edible Bulk Liquid Tankers

Design specific gravity of cargo Cargo tanks arrangements and details Cargo tank construction and material details Cargo tank foundations/supports (non-integral tanks) Details of cargo tank coatings Cargo pumping arrangements Cargo tank refrigeration system Cargo tank washing system Nitrogen injection system for cargo tanks (where fitted) Details of inert gas system, if provided

23 Refrigerated Fish Carriers

Details of the hull reinforcement (where provided)

Details of the cargo spaces, as per 6-2-2/3

Details of the refrigeration system and refrigeration machinery spaces, as per 6-2-2/5

Details of the refrigerated sea water (RSW) tanks

Details of the arrangement for protection of the Ammonia piping in cargo hold (direct expansion systems)

25 Onboard Tests and Trials

Test schedules for the tests and commissioning trials referred to in Section 6-2-16.

This Page Intentionally Left Blank

6

CHAPTER 2 Vessels Intended to Carry Refrigerated Cargoes

SECTION **3 Hull Construction**

Note: Text in *italics* is considered necessary as conditions of classification (i.e., compulsory requirements). (See 6-2-1/5.3.)

1 General

1.1 Applicable Rules

1.1.1

Vessels intended to carry refrigerated cargo are to comply with the following Rules, as appropriate, for the purposes of obtaining Class:

1.1.1(a) For vessels 90 m (295 ft) and over in length, the hull construction and the fire safety arrangements are to be in accordance with the requirements of Part 3, Chapters 2 and 4 of these Rules.

1.1.1(b) For vessels under 90 m (295 ft) in length, the hull construction and the fire safety arrangements are to be in accordance with the requirements of Part 3, Chapters 2 and 4 of the Rules for Building and Classing Steel Vessels Under 90 m (295 ft) in Length.

1.1.1(c) Where the vessel is designed primarily for the carriage of containers in holds, or on deck, or both, with structures for that purpose, such as cell guides, pedestals, etc., the requirements of Part 5C, Chapter 5 and Part 5C, Chapter 6, are also applicable.

1.1.1(d) Commercial fishing vessels under 61 m (200 ft) in length are to be in accordance with Part 5, Chapter 14 of the Rules for Building and Classing Steel Vessels Under 90 m (295 ft) in Length.

1.1.1(e) Vessels intended to operate in areas with low temperatures for long periods are subject to special consideration. The Bureau offers the notation **Ice Class**, followed by an ice class designation, for vessels built in accordance with Part 6, Chapter 1, "Strengthening for Navigation in Ice".

1.1.2

This Section covers the additional items required for hull construction to obtain the classification notations \mathfrak{A} RCC, \mathfrak{A} RC (Hold No.), \mathfrak{A} RCCC, \mathfrak{A} IRCC, \mathfrak{A} REBLT and \mathfrak{A} RFC.

3 Design Considerations

3.1 Design Temperatures – Steel Boundary of Refrigerated Cargo Spaces

3.1.1

Steel grades for plating and associated longitudinals and girders continuously exposed to temperatures below 0°C (32°F) in refrigerated cargo spaces should be based on the steel design service temperature submitted by the shipyard or Owner. When assessing the steel design service temperature, the temperature of the adjacent, internal, non-refrigerated space may be taken as +5°C (+9°F).

3.1.2

When the shipyard or Owner does not submit a temperature gradient calculation to assess the steel design service temperature, this temperature is to be determined as follows:

3.1.2(a) Un-insulated steel within the refrigerated cargo spaces is at the temperature of the space.

3.1.2(b) Steel insulated within the refrigerated cargo space but un-insulated on other side is at the temperature of the un-insulated side.

3.1.2(c) With steel insulated upon both sides, then the following will apply:

Where the temperature difference is less than 30°C (54°F), a mean temperature is to be used and where the temperature difference is greater than 30°C (54°F), the steel temperature is to be specially considered.

3.3 Avoidance of Notches and Hard Spots in Steel Work

Unless permitted elsewhere in the Rules, structural members are to be effectively connected to the adjacent structures so as to avoid hard spots, notches and other harmful stress concentrations. See 3-1-2/15.

3.5 Air Tightness of Refrigerated Cargo Spaces

Arrangements are to be made to prevent odors passing into the refrigerated cargo space from an external source, as follows:

3.5.1

Each independent cargo space is to be airtight and of steel construction.

3.5.2

The hatches, access doors, access hatches, bilge well plugs, tank top manhole plugs, etc. fitted in the insulated surfaces must have air-tight joints.

3.5.3

Ventilators are to be fitted with airtight closing appliances.

5 Materials

5.1 General

The materials used in the construction of the vessel are to be manufactured and tested in accordance with the requirements of Part 2, Chapter 1.

5.3 Steel Grades

Steel materials for hull construction are not to be of lower grades than those required for the material class for the particular location, as given in 3-1-2/3. Furthermore, for steel used for the construction of the refrigerated cargo spaces, the grade of steel is also to comply with 6-2-3/5.5, 6-2-3/5.7 and 6-2-3/5.9.

5.5 Toughness of Steel

The steel grade is to be chosen upon the basis of its toughness, measured by an impact test. For details, refer to Part 2, Chapter 1, in which the impact test requirements and provision are given for three grades (B, D, E) of normal strength steel. The higher strength steel (H32, H36 and H40) are each subdivided into four grades (A, D, E and F). There is no impact test requirement for Grade A steel of normal strength.

5.7 Areas Exposed to Low Temperatures (2007)

The material selection for the following areas of steel work is to be made on the basis of the design service temperature determined in accordance with 6-2-3/3.1.2 and the thickness. The minimum grades of steel to be used for the following are to be in accordance with 6-2-3/5.9:

- Tween deck plating and longitudinals
- Longitudinal and transverse deck girders and deep side shell stringers (i.e., the portion of the tween deck outboard of a centerline hatch)
- Shelf plates, including web and face bars (i.e., the hatch covers supports)
- The longitudinal bulkhead strakes attached to deck plating and the longitudinal stiffeners on these strakes
- Pillars and vertical bulkhead web frames that replace pillars

See also the requirements of 6-2-3/5.11 for selection of materials for hull structural members other than the above

5.9 Steel Grades for Areas Exposed to Low Temperature

5.9.1

The following minimum grades of steel are to be used for the areas given in 6-2-3/5.7:

$$\begin{array}{ll} \underline{0^{\circ}C > T \geq -10^{\circ}C} & (\underline{32^{\circ}F > T \geq 14^{\circ}F}) \\ t \leq 12.5 & (0.50) & A \\ 12.5 & (0.50) < t \leq 19.0 & (0.75) & B/AH \\ 19.0 & (0.75) < t \leq 51.0 & (2.00) & D/DH \end{array}$$

6-2-3

<u>-10°C > T ≥ -20°C (14°F > T ₂</u>	<u>≥-4°F)</u>
t ≤ 12.5 (0.50)	B/AH
12.5 (0.50) < t ≤ 27.5 (1.08)	D/DH
27.5 (1.08) < t ≤ 51.0 (2.00)	E/EH
<u>-20°C > T ≥ -30°C (-4°F > T ≥</u>	<u>-22°F)</u>
t ≤ 22.5 (0.89)	D/DH
22.5 (0.89) < t ≤ 51.0 (2.00)	E/EH

T is design service temperature, in °C (°F)

t is steel thickness, in mm (in.)

5.9.2

Temperature lower than -30°C (-22°F) will be the subject of special consideration.

5.9.3

Steel castings or forgings used in the structure are to meet the same impact test requirements as that for steel plate in the same application.

5.11 For Other Areas of Hull Construction

5.11.1

The steel grades for areas other than given in 6-2-3/5.7 are to be as required by other relevant sections of the Rules for Building and Classing Steel Vessels. These areas include the following:

- Exposed main deck plating and stiffening.
- Forecastle deck plating and stiffening.
- Inner bottom plating and stiffening.
- Transverse bulkheads plating and stiffening.
- Transverse deck beams, where fitted to every frame.
- Shell plating and shell framing.

5.11.2

Where the design of these areas is of an unusual construction, the material grade will be the subject of special consideration.

7 Hatch Covers

7.1

The scantlings of the hatch covers are to be designed in accordance with the requirements of Section 3-2-15.

7.3

Main hatch covers for insulated compartments are to be provided with double sealing arrangements, as a minimum.
Exposed hatch covers to an insulated compartment are also to be weathertight in any sea condition and arrangements are to be made to ensure any water ingress is avoided by packing or by efficient drainage leading to the exposed deck, or by an alternative means approved by the Bureau.

9 Side Shell Doors

9.1 General

Side shell doors are to be designed in accordance with the applicable requirements of Section 3-2-16. In addition, the following requirements are also applicable.

9.1.1

Suitable arrangements are to be made to allow for ship's movement, to ensure that the watertight integrity of the side shell door is maintained in any sea condition.

9.1.2

Adequate structural stiffening is to be fitted at the hull/door sealing interface so that deflections of a local nature are avoided.

9.1.3

The longitudinal strength of the vessel will be subject to special consideration.

The hull girder strength calculations under the combined vertical and horizontal bending moment are to be submitted. The combined longitudinal hull girder stress is to be calculated at the critical points of the continuous longitudinal material e.g., turn of bilge port and starboard, at the intersection of the intact deck edge and sheer strake, and at the inboard corner of the deck opening. Alternatively, a more comprehensive analysis may be submitted for review. On request, this analysis can be carried out by the Bureau.

9.1.4

Structural continuity is to be maintained for the remaining longitudinal and transverse members inboard of the opening in the shell and deck.

9.1.5

Each section of a multi-section door is to satisfy the requirements of Section 3-2-16 independently of adjacent sections.

9.1.6

It is to be shown, from the ship's stability book or otherwise, that in conditions of loading or unloading, and when the ship is heeled by cargo or crane movement, or by offset tank weights, that the door edge is not immersed. The door is to have a sill above the uppermost load line of a minimum height of 0.06B. Alternative methods of preventing the ingress of water will be specially considered. Details in this regard are to be submitted for approval.

9.3 Side Loading Doors, Forming Part of the Deck and Sheer Strake

Where a side loading door, forming part of the deck and sheer strake, is fitted, there is an asymmetrical transverse structural section, whereby important longitudinal elements are not continuous at one side (i.e., the deck stringer plate and sheer strake). The above requirements in 6-2-3/9.1.1 through 6-2-3/9.1.6 are applicable in addition to the requirements of Section 3-2-16.

11 Insulation Supports and Fixtures within Refrigerated Cargo Spaces

Supports and fixtures for the insulation are to be suitable for their intended purpose, and in accordance with the following requirements:

11.1

All fixing arrangements of brackets, hangers, bolts, studs etc., and of their welded connections are to be capable of withstanding local loads caused by weight and thermal contraction/expansion and vibration.

11.3

The insulation and linings are to be fully supported.

11.5

The linings, side shorings, their supports and fixtures are to be able to withstand the loads imposed by the cargo.

11.7

Studs used for supporting the insulation panels are to be welded to the steel structure.

13 Fixing Arrangements for Cargo Securing Fittings within the Refrigerated Cargo Spaces

13.1

Stools or other permanent methods for securing cargo within a refrigerated cargo space, and which are welded to the hull, are to be arranged with a thermal break.

13.3

Stools are to be flush with the grating top.

15 Sealing of Doors and Access Hatches

Doors and hatches for access to insulated compartments are to be provided with a double sealing arrangement and are to be designed so that they can be opened from both sides.

17 Tests and Inspections

All spaces are to be tested for tightness by either a hose test before insulating the surfaces or a gas or smoke pressure test after insulating the space.

PART

6

CHAPTER 2 Vessels Intended to Carry Refrigerated Cargoes

SECTION 4 Cargo Handling Equipment

1 Optional Certification

The following equipment used onboard for loading and unloading cargo may be certified by the Bureau, upon request by the Owner or Builder, for compliance with the requirements as indicated in 6-2-4/3.1, 6-2-4/3.3, 6-2-4/5, and 6-2-4/7:

- Shipboard cranes
- Derrick-and-boom cargo gear
- Automatic pallet loading and unloading system
- Side Loading System

3 Applicable Rules for Cranes, Derrick and Boom Cargo Gear, and Cargo Elevators

3.1 Cranes

A Certification of Lifting Appliances attesting to compliance with Chapter 2, "Guide for Certification of Cranes" of the ABS *Guide for Certification of Lifting Appliances* will be issued at the request of the Owner or Builder upon satisfactory completion of plan review, in-plant survey, installation and testing of the cranes to the satisfaction of the attending Surveyor. Vessels with this Certification will be distinguished in the *Record* by a notation **CRC** (Crane Register Certificate) with the number and capacity of cranes.

3.3 Derrick Post and Boom, and Cargo Elevators

For arrangements of derrick post and boom, and cargo elevators, the Owner or Builder may request ABS Cargo Gear Certification in accordance with Chapter 3, "Guide for Certification of Cargo Gear on Merchant Vessels" of the ABS *Guide for Certification of Lifting Appliances*. Appropriate certificates for attachment to the *Register of Cargo Gear* will be issued following satisfactory compliance with the above requirements.

5 Automatic Pallet Loading/Unloading System (承 APLUS Notation)

5.1 General

In order to receive the \blacksquare **APLUS** notation, an automatic pallet loading/unloading system is to comply with this subsection.

5.3 Automatic Pallet Loading/Unloading System

An automatic pallet loading/unloading system is to be capable of loading, stowing and unloading pallets, and may include the following operations to be carried out automatically:

- Load the pallet from the quay to the deck.
- Transport the pallet to the designated location within the hold.
- Stow the pallet.
- Re-stow the pallet, if necessary.
- Secure the pallet for the voyage.
- Unload the pallet from the hold to the quay.

5.5 Structural Requirements for the Hold Pallet Guide Framework

5.5.1 Guide Framework Design

5.5.1(a) The material for the framework is to be suitable for the anticipated service temperature in the hold.

5.5.1(b) The framework for this method of transportation and stowage of cargo is to be designed for the carriage of standardized pallets.

5.5.1(c) The design of the framework is to take into consideration a maximum pallet load, transverse and longitudinal forces from ship motion, and forces from loading and unloading. The framework is to transfer these loads to the hull structure.

5.5.1(d) Expansion and contraction of the framework:

Due to the cold temperature in the cargo hold, the framework is likely to contract and expand. Therefore, sufficient tolerances are to be provided in the framework to ensure satisfactory operation of the system.

5.5.1(e) Prevention of distortion of the framework:

The framework is to be fitted as to be free of hull stresses, and is to be sufficiently flexible to tolerate movement in the hull due to the ship's motion without causing permanent distortion.

5.5.2 Ship Motions and Forces on the Pallets

5.5.2(a) The Owner is to state the maximum pallet weight for the system design.

5.5.2(b) The dynamic forces associated with the worst roll, pitch and heave motions for the particular loading condition of the vessel are to be used for the design of a guide framework and the lashing arrangements for the constraint of the pallets.

5.5.2(c) Where detailed studies of long term ship motion response to irregular seas are not submitted, suitable empirical formulae may be used for calculating the dynamic forces such as those given in 4.3 of the ABS *Guide for Certification of Container Securing Systems*.

5.5.2(d) In using empirical formulae, the transverse metacentric height value used, i.e. the GM, is to be that calculated for the worst service condition.

5.5.3 Permissible Stresses in the Guide Framework

5.5.3(a) The permissible stresses, based upon the minimum yield of the material, are given as follows:

Normal stress = 0.80 YShear stress = 0.53 Y

where *Y* is the minimum yield strength of the material.

For higher strength steels, Y is not to be taken as greater than 72% of the specified minimum tensile strength.

5.5.3(b) Steel Grades for areas exposed to low temperature are to be in accordance with 6-2-3/5.9.

5.5.3(c) Temperature lower than $-30^{\circ}C(-22^{\circ}F)$ will be the subject of special consideration.

5.7 Lifting Gear Requirements

5.7.1 Recognized Standards for Lifting Gear

As an alternative to the requirements of this section, compliance with recognized design standards appropriate to the construction and service will be specially considered. The plans and the accompanying calculations for approval are to be in accordance with the standard used.

Where cargo handling cranes are fitted to the vessel as part of the automatic pallet loading/ unloading system, the requirements of Chapter 2, "Guide for Certification of Cranes" of the ABS *Guide for Certification of Lifting Appliances* are applicable in addition to the requirements given in 6-2-4/5.11 to 6-2-4/5.23.

5.7.2 Loading Conditions

Typical loads to be submitted and considered in the analysis are:

- Dead and live loads
- Dynamic loads
- Loads due to wind (pallet movement ship to shore)
- Loads due to list and/or trim.

5.7.3 Allowable Stresses

5.7.3(*a*) The structural components are to be designed to the allowable stresses resulting from the coefficients given in 2-2/Table 1 of Chapter 2, "Guide for Certification of Cranes" of the ABS *Guide for Certification of Lifting Appliances*.

5.7.3(b) For wire rope, the Factor of Safety, based on the maximum load imposed on the wire by the safe working load of the lifting device and the breaking strength of the wire rope is to be as follows:

FOS = 5.0 based on breaking load of the wire.

5.7.4 Materials and Welding

Materials and welding are to be in compliance with the requirements given in Section 3 of Chapter 2, "Guide for Certification of Cranes" of the ABS *Guide for Certification of Lifting Appliances*.

109

5.7.5 Wire Rope

The construction of the wire rope is to comply with a recognized standard such as API Spec 9A.

5.7.6 Stowing and Securing

Means are to be provided for safely stowing and securing the lifting gear when not in use while the vessel is on route.

5.9 Deck Houses

Strengthening may be required for the foundations of any lifting appliances that are fixed to the deck house.

The protection of the deck openings is to be in accordance with the requirements of Section 3-2-15.

5.11 Controls

5.11.1

All loading and unloading operations are to be controlled and monitored from a single control station.

5.11.2

Controls are to be provided for the safe operation of the pallet loading/unloading system. These controls are to be clearly marked to show their functions. Energizing the power unit at a location other than the cargo control station is not to set the gear in motion.

5.11.3

Fail safe arrangements are to be provided.

5.11.4

A safe emergency control position is to be provided.

5.11.5

The system is to be provided with adequate back-up arrangements to enable operation in the event of a component failure. Where, due to the design of the system, provisions for a standby system is impracticable, necessary spares are to carried onboard which would enable rectification of a fault and the ability to resume operation.

5.11.6

A key operated switch or other suitable device to prevent unauthorized operation is to be fitted to the control panel of each pallet loading system. Where the equipment in the pallet handling system needs to be operated manually, means are to be provided to enable this operation during commissioning, fault finding and other similar work.

5.11.7

Monitoring is to indicate the system operational status (operating or not operating), availability of power, overload alarm, air pressure, hydraulic pressure, electrical power or current, motor running and motor overload and brake mechanism engagement, as necessary.

5.11.8

The maximum safe working load is to be conspicuously posted near the controls and visible to the operator.

5.13 Emergency Stop Equipment

5.13.1

Emergency stopping equipment is to be provided to stop the pallet handling system without creating additional risks of hazard. The means for the emergency stop are to be located at each control position.

5.13.2

Starting of the pallet handling system is to be possible from the control station after the emergency stopping device has been reset at the location where it was actuated.

5.13.3

Remote emergency shutdown of power units is to be provided outside of the space where they are located, such that they may be stopped in the event of fire or other emergency. Means for local emergency shutdown is also to be provided.

5.15 Hoist Units/Elevators

5.15.1 Braking System

All hoist units/elevators are to be equipped with effective brakes or other equivalent devices capable of stopping the movements of the hoist unit/elevator with its proof load safely at its rated speed and maintaining it in its stopped position. Brakes are to be applied automatically when the power supply is interrupted.

5.15.2 Limitation of the Lifting and Lowering Movement

In order that lifting and lowering movements are stopped without undue shocks, upper and lower limit stops are to be used to define the extent of the vertical travel and the following are to be provided:

5.15.2(a) Arrangements for initiating a controlled stop towards the upper and lower limits when variable or multi-step drives are used.

5.15.2(b) Control devices which prohibit incorrect hoist direction at the hoist travel limits.

5.15.2(c) Ultimate limit switches which in an emergency shall disconnect the main current on all poles via a main contactor to the hoist. The actuators of these switches are to be independent of other switches.

5.15.3 Overload Protection

Where the mass of the load is not controlled prior to reaching the pallet handling equipment, it is to be equipped with an overload protection system.

5.15.4 Rope or Chains

Hoist units/elevators using ropes or chains are to be equipped with a device to identify a slack rope or chain condition which when actuated stops all operational movement of the hoist unit(s)/elevator(s). Provision is to be made to prevent the restarting of the hoist unit(s)/elevator(s) until the fault has been cleared by an authorized person.

5.15.5 Suspension Elements

Means are to be provided to equalize the tension of the suspension elements where more than one element is fixed to one point, and their position is to be monitored.

5.15.6 Hydraulic Drives

5.15.6(a) Where a part of the lifting unit enters the racks, the system is to be so designed that unintentional lowering of the lift unit does not occur even in the event of a failure of the hydraulic system. This does not apply for leakage at the cylinder.

5.15.6(b) For auxiliary hoist units operated by cylinders directly connected to the lifting carriage or forks, valves are to be fitted to prevent uncontrolled lowering in case of pipe or hose failure.

5.15.6(c) The switches specified in 6-2-4/5.15.2 are not necessary if a cushion cylinder is used to prevent excessive stress.

5.17 Traveling Units/Conveyors

5.17.1 Braking System

5.17.1(a) The traveling unit/conveyor is to be capable of being decelerated and stopped safely from the rated speed with the rated load without undue shocks during normal operation and in case of emergency (e.g., over speed) by the following means:

- An electrical or mechanical braking system for normal operation.
- A mechanical braking system to operate automatically in the event of the power supply being interrupted in any way and to act as a parking brake.

5.17.1(b) An additional braking system is to be fitted and is to operate automatically in the event of failure of the main braking system

The additional braking system is to be capable of operating even in the event of the failure of a gear in the travel unit/conveyor.

5.17.2 Speed Reduction System

Automatic speed reduction is to be provided in addition to that required in 6-2-4/5.17.1 when a lower speed is required for reasons of safety.

Function of this system is to be automatically monitored. In case of failure, the machine is to be stopped automatically.

5.17.3 Limitation of Travel

The following means are to be provided to stop the pallet handler safely at the limit of travel:

5.17.3(a) Suitable buffers or other equivalent devices.

5.17.3(b) An operational device in the control circuit to interrupt the power supply to the drive unit before the pallet handler contacts the buffers. This device is not required if the buffer is designed for continual use and is automatically monitored for return to its initial position.

5.17.3(c) In addition, an ultimate limit switch which disconnects in an emergency the mains current on all poles via the main contactor. The actuator of this switch is to be independent of other switches.

5.17.3(d) Means to prevent collisions which may result in injury to personnel or damage to the pallet handler if more than one machine is working on the same rail.

5.17.4 Anti-Derailment Devices

5.17.4(a) A device to prevent derailment (e.g., profile plate around the head of the rail) is to be fitted on the pallet handler which is to be effective in the case of failure of travel wheels or guide rollers.

5.17.4(b) Rail junctions are to include suitable interlocking devices to prevent derailment.

5.17.4(c) Rail sweeps are to be provided in front of travel wheels and guide rollers.

5.17.4(d) Means are to be provided to prevent the pallet handler from dropping more 10 mm (0.40 in.) if a travel wheel or axle fails.

5.17.5 Stability

The machine and the rails are to be designed and built in such a way that the machine will not overturn even during operation of the safety devices.

5.19 Load Handling Devices

5.19.1 Load Stability

The load handling device (e.g., forks or platforms) is to be constructed in such a way that every part of the specified load will remain in a stable position during normal operation.

5.19.2 End Stop

All movements are to be limited by mechanical means. If striking the end stops can create undue stress in the drive system, limiting devices are to be provided in the control circuit.

5.19.3 Limitation of Forces

The drive unit for extending the load handling devices is to be fitted with a friction clutch or other device to limit the drive force to minimize the risk of damage to the pallet handler or associated storage equipment and injury to persons. The racking supplier is to be advised of the resulting forces.

5.19.4 Rotating Devices

To restrain the load handling device when stationary, the drive unit for a rotating load handling device is to be fitted with a braking system or a gear which is self-sustaining in all modes of operation (e.g., an appropriate worm gear).

5.19.5 Interlocks

5.19.5(a) Interlocks are to be provided which only allow lateral movement of the load handling device when the pallet handler has stopped. With the load handling devices extended, lifting and traveling movements are only to be possible at the slow speed intended for that purpose.

Interlocks such as position sensors for forks or load are to be provided which prevent accidental contact of the load or load handling device with racks or other objects.

5.19.5(b) Means are to be provided to prevent loads being moved into occupied positions (e.g., by aperture occupied sensors).

5.19.6 Auxiliary Handling Equipment

Auxiliary lifting and pulling devices are to be built in such a way that the load cannot be moved into or over the operator position and in such a way that the operator is protected against falling parts of the load.

5.19.7 Load Position Monitoring

The load is to be checked for correct positioning on the load handling device before lift or travel movements take place.

5.19.8 Satellite Vehicles

5.19.8(a) Satellite vehicles are to comply with the requirements in 6-2-4/5.17.1 to 6-2-4/5.17.3 and 6-2-4/5.19.1 to 6-2-4/5.19.3.

5.19.8(b) The correct position of the satellite vehicle on the lifting carriage is to be monitored.

5.21 Electrical

5.21.1 General

5.21.1(a) Except as noted herein, compliance with applicable subsections of Part 4, Chapter 8 is required.

5.21.1(b) Electrical equipment in cargo holds is to be in accordance with 4-8-3/Table 2.

5.21.1(c) Design and construction of motors is to be generally in accordance with Part 4, Chapter 8, except that specific service such as the low temperature in a refrigerated cargo hold environment is to be taken into consideration. Accordingly, the operating profile and evidence of the suitability of motors is to be submitted for review. However, motors need not be inspected at the plant of the manufacturer, but will be accepted subject to satisfactory performance witnessed by the Surveyor after installation.

5.21.2 Traveling Cables

5.21.2(a) Traveling cables for power supply, control and communication are to have flame retardant and moisture-resistant outer covers and are to be of a flexible type constructed to an acceptable recognized standard or specification for this service. Further, the traveling cables are to be protected against damage.

5.21.2(b) Where power supply is through arrangements other than cables, such as bus and brushes, rail, etc., the material used is to be suitable for the intended locations, and means are to be provided to protect against accidental contact by personnel during service.

5.21.3 Main Isolator or Disconnecting Switch

5.21.3(a) The power supply for all equipment in an individual area is to be provided with a main isolator or disconnecting switch which is easily and safely accessible, clearly marked for its purpose and safeguarded against unauthorized switching-on by means of padlocks or other similar suitable devices.

5.21.3(b) Where a maintenance or repair area is provided for the main area isolator or disconnecting switch, it is to be possible to interrupt the power supply in the same way as required in 6-2-4/5.21.3(a).

5.21.4 Unintended Connection

The making of unintended connection between a live and disconnected supply line (e.g. by double current collectors) by the storage and retrieval pallet handling equipment or transfer device is to be prevented.

5.23 Piping Arrangements

Hydraulic piping/equipment is to be in accordance with Part 4, Chapter 6.

7 Automatic or Semi-Automatic Side Loading System № ASLS or № SASLS

7.1

In order to receive the **ASLS** or **ASLS** notation, a side loading/unloading system is to comply with the requirements in this paragraph in addition to the applicable requirements in 6-2-4/5.7 to 6-2-4/5.17, 6-2-4/5.21 and 6-2-4/5.23.

A side loading/unloading system is to enable access through the vessel's side shell for the transference of cargo during loading and unloading operation. These operations may be automatically controlled such that the cargo is conveyed via a hoist unit (such as elevator) onto a preselected deck or to the quay.

7.5

Each cargo deck is to be provided with flashing light to give warning when the hoist units are moving. The lights are to be located adjacent to the hoist unit areas.

7.7

The control station is to be provided with the means for maintaining a constant surveillance of the hoist units' access or each deck.

7.9

Local control of the traveling units (such as conveyors) will be permitted at each cargo deck level. The control functions are to be limited to loading and unloading operations for the specific deck.

7.11

An interior communication system is to be provided between the control station, each cargo deck level and the loading platform.

7.13

Emergency stop buttons are to be provided at the each cargo deck level and the loading platform.

7.15

A portable hand pump unit is to be provided to enable emergency operation of the securing system.

7.17 Materials and Welding

7.17.1

Structural materials are to be suitable for the intended service conditions. Materials are to be certified by the mill and verified by an ABS Surveyor.

7.17.2

In general, welding may be in accordance with the latest edition of ANSI/AWS D1.1, Structural Welding Code Steel, or other recognized codes. For Nondestructive Testing (NDT) of welds, the inspection is to be in accordance with the ABS *Guide for Nondestructive Inspection of Hull Welds*, or other recognized codes.

7.19 Loading Conditions

Typical loads to be submitted and considered in the analysis are:

- Dead and live loads
- Loads due to list and/or trim

7.21 Strength Criteria for the Platforms of the Cargo Elevator

7.21.1

Free end supports are assumed for beams and girders unless ends are effectively fixed.

7.21.2

For beams and girders:

Maximum Allowable Bending Stress	$= 0.55 \times F_y$
Maximum Allowable Shear Stress	$= 0.40 \times F_y$
Maximum Allowable Bearing Stress	$= 0.80 \times F_y$
Maximum Allowable resisting tearing failure	$= 0.48 \times F_{v}$

where F_{y} is the specified minimum yield strength of the material.

7.23 Foundations and Supporting Structure

Detailed drawings of the foundation and supporting structure on which the elevator or moving platforms are to be installed are to be submitted. The applicable strength criteria for the foundation structure is as follows:

Maximum Allowable Bending Stress $= 0.55 \times F_y$

Maximum Allowable Shear Stress $= 0.40 \times F_{v}$

where F_{y} is the specified minimum yield strength of the material

7.25 Wire Rope

7.25.1

The construction of the wire rope is to comply with a recognized standard such as API Spec 9A.

7.25.2

The Factor of Safety, based on the maximum load imposed on the wire by the safe working load of the elevator, is to be as follows:

FOS = 5.0 based on breaking load of the wire.

7.27 Stowing and Securing

Means are to be provided for safely stowing and securing the lifting gear when not in use while the vessel is on route.

9 Testing for arrow APLUS and arrow ASLS or arrow SASLS Notations

9.1

The pallet handling gear is to be surveyed at the manufacturer's plant during construction. In-plant surveys during construction are required to the extent necessary for the Surveyor to determine that the details, material, welding and workmanship are acceptable to the Bureau and are in accordance with the approved drawings.

During the initial survey onboard the vessel, the original proof testing and an examination are to be conducted.

9.5

The pallet handling gear is to be tested onboard to the following proof load using movable known weights:

Proof load = $1.25 \times SWL$ (Safe Working Load)

9.7

The proof load test is to include hoisting and lowering of the equipment and testing of fail safe and limiting devices. After being tested, the equipment is to be examined to ensure that no part has been damaged or permanently deformed by the test.

9.9

The operation of all brakes and fail-safe devices are to be demonstrated under simulated loss of power conditions to the satisfaction of the Surveyor.

9.11

Satisfactory operation of the pallet handling system, together with the controls, is to be demonstrated after installation onboard to the satisfaction of the attending Surveyors.

This Page Intentionally Left Blank

6

CHAPTER 2 Vessels Intended to Carry Refrigerated Cargoes

SECTION 5 Refrigerated Cargo Spaces

Note: Text in *italics* is considered necessary as conditions of classification (i.e., compulsory requirements). (See 6-2-1/5.3.)

1 General

All refrigerated cargo spaces and air cooler rooms are to have access doors, hatches and ladders arranged for easy access and escape.

3 Design Considerations

3.1

Where cargo spaces are intended to carry palletized cargo, the minimum clear height in tween deck cargo spaces is to be consistent throughout to accommodate pallets of a height specified by the Owners/builders and is to include a minimum air gap above the pallets of 100 mm (4 in.) for air circulation.

3.3

For vessels intended to operate in regions where ambient temperatures are expected to be lower than the cargo space temperatures, the owner or builder may install cargo space heating or other means for maintaining cargo space transport temperatures. These systems should have appropriate controls for maintaining the desired temperature.

3.5

When using either fork lift trucks or pallet trucks, the grating, insulation, lining and spar deck planking is to be of sufficient strength to support the weight of a fully loaded truck carrying the heaviest load envisaged during normal loading and unloading. This is to be demonstrated in accordance with tests specified in 6-2-5/17.5.

3.7 Corrosion and Protection

3.7.1 Hull Structure

3.7.1(a) All steel surfaces are to be cleaned of grease and other organic contaminants and are to be abrasive-blasted to near white finish (SSPC-SP-10, NACE No.2, SWEDISH SA 2.5) or to an alternative finish in accordance with the paint manufacturers specification prior to coating. This may be done before erection and welding, in which case special attention is to be given to the preparation of the welded areas.

Part6Optional Items and SystemsChapter2Vessels Intended to Carry Refrigerated CargoesSection5Refrigerated Cargo Spaces

3.7.1(b) Steel surfaces of refrigerated cargo spaces, behind insulation and including the inside of hatch coamings are to be coated to a minimum dry film thickness of 150 microns (6 mils). Steel work and fittings, which are to be covered with insulation, are to be similarly cleaned and then coated to prevent corrosion. Where polyurethane foam is applied directly to the steel structure and bulkheads, the surfaces are to be prepared to ensure proper adhesion and resistance to corrosion.

3.7.1(c) Openings in the refrigerated cargo spaces such as the bilge limbers and plugs and other openings to these spaces such as the hatch covers and access doors are to be constructed of moisture resistant material or covered with such material.

3.7.1(d) Where the tank top or bulkhead of an oil storage tank forms part of the refrigerated cargo space walls, the surface of the tank plating is to be coated with an oil impervious coating.

3.7.2 Fittings and Fixtures

Steel bolts, nuts, screws, washers, hangers and other similar fixtures which support or secure insulation, pipes, meat rails, etc., are to be protected against corrosion by means of galvanizing or other equally effective methods approved by the Bureau.

3.7.3 Pipes, Ducts and Drip Trays

3.7.3(a) Refrigerant and brine pipes in the refrigerated cargo spaces are to have corrosion protection in accordance with 6-2-6/23.3.

3.7.3(b) All steel ducts and pipes passing through the refrigerated cargo spaces are to be protected against corrosion prior to the application and installation of the insulation.

3.7.3(c) Steel drip trays provided under air coolers and vertical cooling grids are to be galvanized or epoxy coated. Materials other than steel such as plastic or flake glass may be used for the construction of the drip trays, provided the material used is suitable for the intended application and has been approved by the Bureau.

5 Insulation

5.1

The insulation arrangement, materials, construction and installation are to be in accordance with the approved plans and to the satisfaction of the Surveyors.

5.3

Where the insulation is provided in the form of prefabricated insulating panels, the panels are to be approved by the Bureau. Inspections by the Surveyors are required during the manufacture of these panels.

5.5

When requested, the manufacturing of the panels referred to in 6-2-5/5.3 may be accepted under the quality assurance program.

5.7 Types

Rockwool, polyurethane, styrofoam, glass fiber or equivalent material may be used for insulation purposes.

5.9 Properties

5.9.1

All insulation material used in the refrigerated cargo spaces is to be of a type which does not produce or absorb paint.

5.9.2

Organic foam is to be fire retardant as established by a recognized fire test procedure such as DIN 4102.B2. Test certificates in this regard issued by independent testing laboratories are to be submitted for review.

5.9.3

The insulation material is to be resilient and should not distort or deform due to the temperatures which will be encountered in service. It should also be capable of withstanding shipboard vibrations likely to occur during normal operating conditions.

5.11 Temperature Gradient Calculation

5.11.1

The thickness of insulation over all surfaces is to be in accordance with approved specifications and plans.

5.11.2

Thermal bridges associated with fittings for securing the panels and moisture barriers around the open edges are to be accounted for in the calculations.

5.11.3

Where machinery spaces and other such spaces fitted with heating arrangements such as fuel tanks, etc., are situated adjacent to the refrigerated cargo spaces, the heat transfer calculations are to take this into consideration.

5.13 Installation

5.13.1

The insulation is to be efficiently packed and securely fastened.

5.13.2

Insulation slabs or blocks, where used, are to have the joints staggered and butted as close as possible. If several layers of insulation blocks are employed, these are also to be installed in a similar manner. Any unavoidable gaps between the joints and crevices are to be filled with suitable insulating material.

5.13.3

Panels are to be of sufficient mechanical strength to withstand, without damage, loads due to over- or underpressure of the refrigerated cargo spaces resulting from the defrosting of coolers or rapid cooling of the refrigerated cargo space. Alternatively, suitable pressure equalizing devices are to be fitted.

5.13.4

During the installation of the prefabricated insulation panels, it is to be ensured that the panels are butted together such that all joints along the edges and the corners are sealed at the outer and inner sides to form a vapor barrier using an approved sealant. The same method is to be employed at floors, ceiling intersections and the vertical bulkheads.

5.13.5

Provisions are to be made in the design for an effective moisture barrier at the open edges of the panels at the footing, corner intersections, openings for doorways, etc.

5.13.6

Decks, partitions and other structural members which extend into refrigerated cargo spaces from the ship side, machinery spaces or other such non-refrigerated adjacent spaces are to be effectively insulated over a length of at least 1 m (3.3 ft) into the refrigerated cargo space unless temperature gradient calculations prove less carry-over is sufficient.

5.15 Lining

5.15.1

The insulation is to be protected from water and water vapor by suitable lining material such as marine plywood (coated), metallic sheet or other similar material which is impervious to water.

5.15.2

The insulation lining referred to in 6-2-5/5.17.1 is to be installed in such a way as not to allow water to penetrate into the insulation during hosing down of the chambers.

5.15.3

Lining, cooler room screens and structures supporting these are to be of sufficient strength to withstand the loads imposed by either the refrigerated or general cargo in transit

5.15.4

Where plywood is used it is to be treated against fungi, other microorganisms and dampness.

5.15.5

All timber which is embedded in insulation is to be impregnated under pressure with odorless preservative. All sawn ends and bolt holes to be treated in situ.

5.15.6

In order to protect the lining against damage from forklift trucks or pallet jacks, a metallic plate of minimum height 500 mm (1.6 ft) and thickness of 6 mm (0.24 in.) is to be provided at deck level. Alternative heights and thicknesses proposed by the Owner/builder will be specially considered. Other materials such as glass reinforced plastics may be used, provided it is demonstrated to the satisfaction of the Bureau to be of suitable strength and durability.

5.17 Insulation of Pipes, Ducts and Vent Trunks

5.17.1

To prevent freezing, vent, sounding, overflow and water pipes are to be insulated from cold surfaces such as the bulkheads and decks and installed so that contact with the warmer surfaces such as the vessel side is maintained as much as possible. Where this is impracticable, heat tracing of these pipes is to be fitted.

5.17.2

Ducts and pipes passing through refrigerated cargo spaces are to be efficiently insulated.

5.17.3

Where thermometer tubes are partially inserted into the space being monitored, the portion of the tube external to that space is to be efficiently insulated.

5.19 Penetration of Insulation

5.19.1

Plugs provided for access to manhole covers, bilge suction wells, drains, etc. are to be insulated in accordance with approved plans.

5.19.2

To prevent seepage of water into the tank top insulation, openings for manholes and bilge covers are to be fitted with liquid tight steel coamings. The height of the coaming is not to be less than the insulation. A sealant may be applied at the edges to prevent seepage into the insulation.

5.19.3

Ducts, pipes and cable penetrations are to be made airtight.

5.19.4

Provisions are to be made in the installation of the insulation to enable inspection during the periodical surveys of the bilge suction pipes, vent and sounding pipes and other similar pipes situated behind the insulation. This may be achieved by installing removable insulation panels or other methods approved by the Bureau.

7 Stowage and Side Shoring

7.1

Provisions are to be made to ensure the circulation of air between the cargo and the insulation lining surfaces.

7.3

Cooling grids located on vertical surfaces are to be protected by dunnage ribs.

7.5

Side shoring is to be of sufficient strength to withstand the dynamic loads imposed by palletized cargo in transit.

9 Air Circulation and Ventilation

9.1

The required air circulation and fresh air ventilation rates are to be based upon the air volume of empty refrigerated cargo spaces.

9.3

The design of the air circulation system in refrigerated cargo spaces intended for the carriage of fruit is to ensure a sufficient flow of chilled air throughout all the stow in the loaded condition.

9.5

For refrigerated cargo spaces fitted with coolers with forced air circulation, the quantity of circulating air for each refrigerated cargo space is to be based on the nature of the cargo and the design temperature, but shall not be less than 30 air changes per hour. Lower air circulation rates for frozen cargoes will be considered.

9.7

For fruit carriers the cooling fans are to have the capability of running at a minimum of two speeds such that the air circulation rates in the refrigerated holds can be maintained at not less than 45 and 90 air changes per hour.

9.9

Refrigerated cargo spaces intended for carriage of fruit must also be provided with a fresh air mechanical ventilation system providing at least 2 air changes per hour.

9.11

Air circulation and fresh air ventilation rates lower than those stated in 6-2-5/9.5, 6-2-5/9.7 and 6-2-5/9.9, will be considered subject to the submission of an assessment of the heat to be removed, nature of cargo, etc.

9.13

Each refrigerated cargo space intended for the carriage of fruit is to be provided with its own separate inlet and exhaust vent. The position of the air inlet is to be selected to minimize the possibility of contaminated air entering into any refrigerated cargo space.

9.15

For details of the ventilation when the vessel is engaged in carriage of cargoes other than refrigerated cargoes, reference is to be made to the requirements contained elsewhere in the Rules.

11 Ducts, Gratings and Spar Decks

11.1

Cooling air from the fan unit is to be evenly distributed at the bottom of the refrigerated cargo spaces.

11.3

The height of the gratings and size and number of ventilation holes are to be appropriate for the air circulation requirements.

11.5

The size and number of ventilation holes in the spar deck planking are to be appropriate for the air circulation requirements.

Suitable arrangements are to be made to allow for ease of lifting of the gratings to enable cleaning and maintenance of the deck beneath.

11.9

In each refrigerated cargo space, the grating and associated supports directly underneath the hatch opening and 600 mm (2.0 ft) beyond are to be designed to withstand impact during loading. Increased grating thickness and/or reduced spacing of the supports will be considered, provided air circulation is not adversely affected. The protection of insulation in gratingless cargo spaces is to be no less effective.

13 Bilge and Drainage Arrangements

13.1

The bilge system for cargo spaces is to be in accordance with 4-6-4/5.5.

13.3

Cooling grids fitted vertically on the refrigerated cargo space sides and air coolers are to be provided with drip trays and drain pipes arranged as follows:

13.3.1

Drain pipes are to be sized to allow drainage without overflowing of the drip trays during defrosting operations, taking into consideration the vessel's motion.

13.3.2

Drainage openings in the drip trays are to be easily accessible for cleaning.

13.3.3

Drain pipes are to have flanged connections near the outlets to allow cleaning in the event of blockage.

13.3.4

Trace heating of the drain pipes and drip trays is to be provided when carrying frozen cargo.

13.5

All refrigerated cargo spaces are to have ample continuous drainage.

13.7

Provision is to be made to prevent air and water from leaking into adjacent refrigerated cargo spaces.

13.9

To prevent air from leaking into adjacent refrigerated cargo spaces, open ended pipes such as drains from each deck space or the drip trays from these spaces are to be fitted with liquid seal traps or non-return valves. These requirements are also applicable to drains underneath the coolers.

13.11

When drains from separate refrigerated cargo spaces join in a common main, the branch lines are to be provided with liquid seal traps to prevent air from leaking into adjacent refrigerated cargo spaces. In addition, branch lines from lower spaces are to be provided with non-return valves to prevent flow of water from one compartment to another.

13.13

Liquid seal traps located in areas subject to freezing are to be filled with brine and are to be easily accessible for maintenance purposes.

13.15

Drains from other spaces are not to lead to the bilges of refrigerated cargo spaces.

13.17

Bilge wells where drain pipes are led, and connections to the main bilge system are to be separated from refrigerated cargo spaces by air tight moisture resistant divisions.

15 Pipes Passing Through Refrigerated Cargo Spaces

15.1

Air, sounding and tank filling pipes which pass through insulated spaces are to be arranged as close to the shell and bulkhead structure as possible. Flanged joints are to be kept to a minimum, and where additional supports are necessary, brackets are to be fitted.

15.3

Steel pipes penetrating the tank top in refrigerated cargo spaces are to have a wall thickness of a heavier grade in way of the insulation and the tank top.

15.5

All sounding pipes passing through refrigerated spaces where the temperature may be below 0°C (32°F) are to have an inside diameter of not less than 65 mm (2.6 in.).

15.7

Sounding pipes for oil tanks are not to terminate in refrigerated cargo spaces or air cooler rooms.

17 Tests and Inspections

17.1

The shipyard is to submit the results of the corrosion resistance coating thickness measurement to the attending Surveyor.

17.3

The Surveyor is to verify the adequacy of the seals and traps for each refrigerated cargo space.

The test required by 6-2-5/3.5 on the insulation and lining is to be carried out in the presence of the attending Surveyor as follows:

A 4×4 m (13 \times 13 ft) sample of the cargo floor construction, including insulation, is to be prepared and tested by a fully loaded fork lift truck with its heaviest load envisaged during normal loading and unloading operations being driven and maneuvered over the sample. Where cargo operations will not involve forklift trucks, a similar test using a fully loaded pallet truck is to be performed.

17.7

Insulation thickness on pipes, valves, flanges and fittings is to be examined by the attending Surveyor.

17.9

Sample tests performed by the manufacturer to determine the density of the insulating material are to be presented to the Surveyor for verification that the material complies with the design specification.

17.11

Where insulating foam is intended to be applied directly to the ship's structure, the method of application and the procedure are to be approved prior to commencement of the work.

17.13

For prefabricated panels referred to in 6-2-5/5.3, the insulation material is to be in accordance with 6-2-5/17.9.

17.15

For air distribution tests, refer to 6-2-16/3.1.3.

This Page Intentionally Left Blank

6

CHAPTER 2 Vessels Intended to Carry Refrigerated Cargoes

SECTION 6 Refrigeration Machinery

Note: Text in *italics* is considered necessary as conditions of classification (i.e., compulsory requirements). (See 6-2-1/5.3.)

1 General

1.1

The location of the refrigeration units and associated equipment such as pumps, coolers, cooling fans and motors, etc., is to be such that sufficient space is available to allow easy access during maintenance and repair.

1.3

In general, the refrigeration units for cargo refrigeration are to be completely independent of any refrigerating machinery associated with air conditioning plants or provision refrigeration installations. A combined system will be subject to special consideration on an individual basis.

1.5

An effective defrosting system suitable for the service conditions and cargo carried is to be installed.

3 Design Considerations

3.1 Design Pressures

3.1.1

The design pressure is the maximum allowable working pressure at which the system can be used. Relief valves in any part of the system are to be set such that the design pressure is not exceeded.

3.1.2

The system is to be designed such that under all normal operating and standstill conditions the design pressure is not exceeded.

3.1.3

In general, the design pressure on the high pressure side of the system is not to be less than the pressure corresponding to the condensing temperature of the refrigerant used, e.g., saturated pressure at 55° C (130° F) for refrigerants with zero or negligible glide. For zeotropic blends with significant glide, the bubble point pressure is to be used (indicated with an asterisk in 6-2-6/3.1.6).

3.1.4

The design pressure of the low pressure side of the system is not to be less than the pressure corresponding to the evaporating temperature of the refrigerant used at the discharge from the expansion valve, e.g., saturated vapor pressure at 45° C (113° F) for refrigerants with zero or negligible glide. For zeotropic blends with significant glide, the bubble point pressure is to be used (indicated with an asterisk in 6-2-6/3.1.6).

3.1.5

Where the method for defrosting is by means of circulating hot refrigerant gas, the design pressure on the low pressure side is to be the same as that on the high pressure side.

3.1.6

The minimum design pressure for the refrigerants listed is to be as follows:

Refrigerant	High pressure side	Low pressure side
	bar (kgf/cm², psi)	bar (kgf/cm², psi)
R22	20.5 (20.9, 295)	17.1 (17.4, 250)
R717	22.4 (22.8, 325)	17.9 (18.3, 260)
R134a	13.7 (14.0, 200)	10.5 (10.7, 150)
R404a*	25.0 (25.5, 365)	19.8 (20.2, 285)
R407a*	25.2 (25.7, 365)	19.8 (20.2, 285)
R407b*	26.5 (27.0, 385)	20.9 (21.3, 305)
R407c*	23.9 (24.4, 345)	18.8 (19.2, 275)
R410a	32.8 (33.4, 475)	25.9 (26.4, 285)
R410b	32.5 (33.1, 471)	25.7 (26.2, 375)
R507	25.4 (25.9, 370)	19.9 (20.3, 290)

3.3 Capacity

3.3.1 General

3.3.1(a) At least two refrigeration units are to be provided. The aggregate capacity of the units is to be sufficient to deal adequately with the cargo as received aboard. The ambient conditions for determining the required capacity are to be based on the following conditions:

Sea water temperature	32°C (90°F)
Air temperature	35°C (95°F)
Relative humidity	75%

Where the vessel is intended to operate in regions where the temperature and the relative humidity other than those mentioned above are encountered, alternative conditions will be specially considered upon request from the Owners and/or builders.

3.3.1(b) Capacity of the refrigerating machinery is to be selected taking into account their purpose and service conditions. Where appropriate, allowance is to be made for heat generated by air circulation fans, heat produced by cargo, introduction of fresh air, heat transmission through insulation and heat input from other sources such as insulation, pipes, ducts, tank tops, steel structure, etc.

3.3.1(c) In order to compensate for the deterioration of blown foam insulation over the life of the installation, the calculated transmission heat, based upon the rated insulation performance, is to be increased by 10%, prior to inclusion in the capacity calculations.

3.3.1(d) Where refrigerated spaces are served by independent separate refrigeration units, the capacity of the units will be subject to special consideration.

3.3.2 Fruit Carriers

3.3.2(a) For the purposes of calculations, the aggregate capacity of the refrigeration system is to be such that for all the loaded refrigerated cargo spaces, under the conditions specified in 6-2-6/3.3.1, the return air temperature can simultaneously be reduced to a temperature $2^{\circ}C$ (1°F) higher than the required steady state delivery air temperature within 24 to 36 hours.

3.3.2(b) A cool down period greater than that stated in 6-2-6/3.3.2(a) above will be specially considered when the vessel is likely to operate under conditions other than those stated in 6-2-6/3.3.1(a) or an alternative cool down period is agreed between the designers/builders and Owners.

3.3.2(c) In the event that one of the refrigeration units becomes non-operational, the capacity of the remaining unit(s) is to be sufficient to achieve and maintain the required delivered air steady state temperature when operating under the design conditions stated in 6-2-6/3.3.1.

3.3.3 Refrigerated Cargo Vessels other than Fruit Carriers

3.3.3(a) For the purposes of calculations the total aggregate capacity of the refrigeration system is to be such that minimum design temperature in all refrigerated cargo holds can be achieved under maximum loads with ambient conditions, as applicable and as specified in 6-2-6/3.3.1.

3.3.3(b) The capacity of the refrigeration system is to be sufficient to maintain the minimum design temperature in all refrigerated cargo spaces, under the conditions specified in 6-2-6/3.3.1, as applicable, with one of the units in standby condition.

3.3.4 Fish Processing Vessels

The aggregate capacity of the refrigeration system is to be in accordance with 6-2-6/3.3.3.

5 Refrigerants and Secondary Coolants

5.1

Refrigerants listed under 6-2-6/3.1.6 may be used in the refrigeration system of a refrigerated cargo vessel classed with the Bureau.

5.3

Use of other refrigerants will be permitted by the Bureau, subject to approval of the chemical properties, including toxicity, flammability and compliance with the requirements of 6-2-1/11.5.

5.5

Where it is intended to replace refrigerant in a refrigeration system onboard existing vessels under Bureau Class, their use will be subject to the following:

5.5.1

Where substitute refrigerant operates at pressures greater than the system's original design pressure, details are required to be submitted to show the method used, such as calculations followed by hydrostatic tests to ensure the integrity of the existing system to withstand higher pressures under all operating and stand still conditions.

5.5.2

For those substitute refrigerants which incorporate a flammable component, precautions are to be taken to ensure that air cannot enter into the system.

5.5.3

The lubricating oil is to be soluble with the substitute refrigerant.

5.5.4

For those lubricating oils which are hygroscopic, the refrigeration system is to be effectively dehydrated before charging.

5.5.5

Poly-glycol lubricating oils should not be used in systems which previously contained chlorinated refrigerants and mineral oils.

5.5.6

The thermal stability of the lubricating oil is to be compatible with the discharge gas temperature.

5.5.7

The capacity of the pressure relief devices and the diameter and length of the discharge pipes are to comply with 6-2-6/17.15, 6-2-6/17.17 and 6-2-6/17.19.

5.5.8

The substitute refrigerant is to be compatible with the materials used in the existing system.

5.5.9

A refrigerant leakage detection system complying with 6-2-10/9 is to be provided in accordance with 6-2-10/9.1.

5.7

Hydrocarbons such as propane, butane, pentane or other similar flammable products are not permitted to be used as refrigerants in shipboard refrigeration systems.

5.9

The use of CFCs as refrigerants in shipboard refrigeration systems is not permitted by various administrations.

Solutions of sodium chloride (NaCl), calcium chloride (CaCl), magnesium chloride (MgCl) and water, commonly referred to as brine, may be used as secondary coolant in shipboard refrigeration systems. The use of other substances as secondary refrigerants will be considered, provided the flash point of the substance used is greater than $66^{\circ}C$ ($150^{\circ}F$).

5.13

Brine concentration is to be maintained to suit the evaporating temperature.

5.15

The refrigerant storage cylinders are to be approved by a nationally recognized agency or other similar authorized body.

7 Materials and Fabrication

7.1

Materials are to comply with the applicable requirements in Part 2, Chapter 3 and Part 4, as applicable.

7.3

Materials used for air coolers are to be corrosion-resistant or, alternatively, protected by galvanizing of the external surfaces exposed to the airflow.

7.5

Ferrous materials for refrigerant piping, valves and fittings with an intended service temperature below $-18^{\circ}C$ (0°F) are to comply with the requirements of Section 2-3-13, or with other approved specifications, except that:

7.5.1

Impact testing will not be required for austenitic stainless steel.

7.5.2

Impact testing will not be required for nut and bolt materials.

7.5.3

Impact testing will not be required if the intended service temperature is not below $-29^{\circ}C$ ($-20^{\circ}F$), and provided the maximum fiber stress is not more than 40% of the allowable stress indicated in 4-4-1A1/Table 2 or 4-6-2/Table 1.

7.7

Seamless copper piping and seamless red brass piping, manufactured in accordance with the requirements of Section 2-3-16 or Section 2-3-17, and seamless or welded copper-nickel piping will be acceptable without impact testing.

7.9

Material for crankshafts, connecting rods, cylinders and cylinder covers, housings, rotors and rotor casings of reciprocating and rotary compressors, as applicable, is to be in accordance with the applicable requirements of this Section and Part 2, Chapter 3. Materials complying with other recognized standards will be considered.

7.11

Synthetic materials, such as neoprene, chloroprene, etc., may be used for gaskets, seals and packing in halocarbon refrigerant systems. Natural rubber is not to be used for applications in contact with the refrigerant.

7.13

Where the intended service temperature is below -18° C (0°F), ferritic steel plating used for the fabrication of refrigerant liquids receivers or other low-temperature pressure vessels is to be in accordance with 5C-8-6/Table 2. Provisions for exemptions to the toughness testing for low-stress applications in subsection 6-2-6/7.5 of this Chapter may be applied to the receivers and pressure vessels.

7.15

Cast iron pipe is not to be used for refrigerant service.

7.17

The material of pipes, valves and fittings is to be in accordance with Part 2, Chapter 3 and is to be compatible with the refrigerant and, where applicable, the secondary coolant. For service where the fluid is a strong electrolyte such as brine, the materials used within the same system are to be compatible in terms of galvanic potential. In general, fabrication is to be in accordance with 2-4-2/9.5 and the following:

7.17.1 Ammonia system

Piping is to be black steel (non-galvanized). Seamless pipes and welded pipes are acceptable for use in Ammonia systems.

7.17.2 Halocarbon System

Welded or seamless copper, brass or copper-alloy pipes may be used in halocarbon systems. Piping is to be welded or brazed and pipe connections made are to be either welded or through brazed flanges. Soldering is not permitted.

Connections to valves, castings, expansion joints, spool pieces and other similar fittings is to be by welding, brazing or by use of flanges.

Magnesium alloys are not to be used where they would be in contact with any halogenated refrigerants, e.g., R22, R134a, etc.

7.19

Finned piping is acceptable for use in liquid to vapor/gas heat transfer components.

7.21

Materials used for construction of pump components which are exposed to the medium being circulated are to be suitable to withstand the effect of that medium.

9 Location and Access

9.1

The refrigeration machinery may be located in the main/auxiliary machinery spaces or in a separate dedicated space.

9.3

Spaces containing refrigeration machinery and refrigerant storage cylinders are not to have direct access to accommodation spaces. Doors are to open outwards and those not leading directly to the open deck are to be self-closing.

9.5

Refrigerant storage cylinders are to be properly secured and located in the space containing the refrigeration machinery or a dedicated space which is independently, naturally ventilated. Means for closing the vent openings from outside the dedicated space are to be provided.

9.7

Air coolers and fans are to be located in a manner which will enable easy access for the maintenance, repair and replacement of equipment with the refrigerated cargo spaces fully loaded.

11 Ventilation of Refrigeration Machinery Space

11.1

Spaces containing refrigerating machinery are to be ventilated by means of mechanical ventilation. The ventilation is to be able to provide at least 30 air changes per hour.

11.3

The ventilation ducting of spaces containing refrigerating machinery is not to be connected to the ventilation system serving the accommodation spaces, and the ventilation exhaust is to be led to the weather independently from other ventilation ducting.

11.5

The exhaust air ducts are to be air tight and the exhaust outlet is to be so positioned as to prevent recirculation to other enclosed spaces.

11.7

Means are to be provided for stopping the ventilation fans and closing the ventilation openings from outside the refrigerated machinery spaces.

13 Compressors

13.1

The crankcase of trunk piston compressors and rotor casing of rotary compressors are to be designed to withstand a pressure equal to the maximum design pressure of the high pressure side of the system.

Air-cooled compressors are to be designed for an air temperature of at least 45°C (113°F). Water cooled compressors are to be designed for a water temperature of at least 32°C (90°F)

13.5

Compressors of the positive displacement type over 10 kW (13.4 hp) are to be fitted with a relief valve or a bursting disc so arranged that the discharge is led from the high pressure side to the low pressure side in the event that the discharge valve is inadvertently closed. The capacity of the pressure relief device is to be sufficient to accommodate the discharge from the compressor when operating at full load at the maximum possible suction pressure for the refrigerant used. Alternatively, discharge may be led to deck, provided the outlets are located in accordance with 6-2-6/17.11.

13.7

Compressor vibration resulting from gas pressure pulses and inertia forces is to be taken into account in the compressor design and mounting arrangement. Acceptable mounting arrangements include resilient rubber mounts, springs, etc.

13.9

The compressor is to be equipped with safety devices to automatically stop the compressor in accordance with 6-2-10/Table 1.

13.11

All compressors are to be equipped with gauges in accordance with 6-2-10/Table 1.

15 Pressure Vessels and Heat Exchangers

15.1 General

Pressure vessels and heat exchangers under refrigerant pressure are to be constructed in accordance with Part 4, Chapter 4.

15.3 Oil Recovery Equipment

Oil separators with automatic drains are to be provided upstream of the evaporator. For compressors which have gas inter coolers, oil separators are to also be provided between the low stage discharge and the inter cooler. Arrangements for recovering oil from surge pots are to be provided.

15.5 Refrigerant Filters and Dryers

15.5.1

Filters are to be provided in the liquid line upstream of the expansion valves and in the gas line on the suction side of the compressor.

15.5.2

Where the solubility of water in the refrigerant is low, dryers are to be provided to maintain the water vapor content below the value at which free water will occur in the low pressure side of the system. The dryers are to be located upstream of the expansion valves.

15.7 Liquid Receivers

15.7.1

The refrigerating system is to be provided with a liquid receiver with shut off valves arranged to accept and capable of holding the complete refrigerant charge of the refrigerating units during servicing or repairs. Where each refrigerating unit is fitted with an individual receiver, the capacity is to be sufficient to hold the charge from that unit.

15.7.2

Receivers may be fitted with gauge glasses of the flat glass type having approved self-closing valves at each end. Tubular type gauge glasses will be considered, provided they are fitted with approved self-closing valves at each end and are protected from mechanical damage.

15.9 Expansion Valves

Expansion valves are to be suitable to achieve the required temperature for the refrigerant used.

15.11 Evaporators

Evaporators of the flooded type are to be provided with arrangements for recovering oil.

15.13 Brine Heater

Where arrangements for heating brine are by means of an auxiliary boiler, the capacity of the boiler is to be sufficient to ensure that heating of all refrigerated cargo spaces can be performed simultaneously, while supplying other shipboard consumers under normal operating conditions.

17 Safety Relief Devices

17.1

Each refrigerant system is to be provided with pressure relief devices set to relieve at a pressure not greater than the design pressure. Where relief valves are fitted, they are to be of a type not affected by back pressure.

17.3

Pressure relief devices are not to be provided with means for isolation from the part of the system they are protecting. However, where over pressure protection is by means of dual pressure relief devices, the isolation arrangement described in 6-2-6/17.7 will be acceptable.

17.5

Pressure vessels which contain liquid refrigerant and which may be isolated from the refrigeration system are to be protected by a pressure relief valve or bursting disc set to relieve at a pressure not greater than the design pressure.

17.7

Pressure vessels having an internal gross volume of 0.285 m³ (10 ft³) or greater are to use dual pressure relief valves or two bursting discs, or a combination thereof. These devices are to be fitted with a three-way valve to permit maintenance of either of the two relief devices without isolating the other. Where pressure relief is to the low pressure side of the refrigeration system, a single pressure relief valve may be used.

Sections of piping that can be isolated in a liquid full condition are to be provided with pressure relief valves to protect against excessive pressure due to temperature rise.

17.11

Discharge from pressure relief devices is to be led directly to the weather or the low pressure side of the refrigerant system for subsequent relief to the weather. The discharge outlet from these relief devices is to be led away from ventilation inlets and openings. Prevention against the ingress of water, dirt and debris is to be provided.

17.13

When the discharge from a pressure relief valve is led to the weather, further protection against loss of refrigerant through leakage may be provided by means of leak detectors located between the outlet and the relief valve.

17.15

The minimum required discharge capacity of the pressure relief device, in terms of air flow, for each pressure vessel is to be determined by the following formula:

$$C = f D L$$

where:

- *C* = *Minimum* required discharge capacity of the pressure relief device, in terms of air flow, kg/s (pounds per minute).
- *D* = Outside diameter of the pressure vessel, in *m* (ft).
- L = Length of the pressure vessel, in m (ft).
- *f* = Factor applicable to type of refrigerant. The values for *f* of the more common refrigerants are listed in the following table:

	f	<i>f</i> *
Refrigerant	metric (US units)	metric (US units)
R22	0.131 (1.6)	
R134a	0.131 (1.6)	
R404a	0.18 (2.2)	
R407a		0.163 (2.0)
R407b		0.203 (2.5)
R407c	0.131 (1.6)	
R410a		0.163 (2.0)
R410b	0.197 (2.4)	
R507		0.203 (2.5)
R717	0.041 (0.5)	

 f^* - Factor proposed and under consideration.

17.17

The internal diameter of the discharge pipe from the pressure relief device is not to be less than the outlet of that device. The internal diameter of a common discharge line serving two or more pressure relief devices which may discharge simultaneously is to be based upon the sum of their outlet areas with due allowance for the pressure drop in all downstream sections.

The maximum length of the discharge pipe serving a pressure relief device is to be determined by the following formula:

$$L = \frac{FP^2d^5}{C_r^2}$$

where:

 $F = 1.95 \times 10^{-10} (1.88 \times 10^{-10}, 0.5625)$

- L = Length of the discharge pipe, m (ft)
- $P = \{\text{Set pressure of relief device} \times 1.1\} + 1.0 \text{ bar } (1.0 \text{ kgf/cm}^2, 14.7 \text{ psi})\}$

d = Internal diameter of discharge pipe, mm (in.)

 C_r = Rated discharge capacity of pressure relief device, in terms of air flow, kg/s (pounds per minute).

19 Air Coolers

19.1

The design of the air cooler coils/cooling grids is to be based upon the total heat load and service conditions specified in 6-2-6/3.3, and the air circulation rates specified in 6-2-5/9.

19.3

To minimize the dehydration of fruit cargo and the frosting of air cooler coils/cooling grids, the refrigeration system is to be designed such that under steady state conditions, the inlet temperature of the refrigerant or secondary coolant circulating in the air cooler coils/cooling grids is not greater than 5° C (9°F) below the delivery air temperature for fruit cargoes and 10°C (18°F) below the return air temperature for frozen cargoes.

19.5

For each refrigerated cargo space over 300 m^3 (10,600 ft³) cooled by air coolers, the air cooler coils are to be divided into at least two independent sections so that any one of them may be isolated without affecting the operation of the others. Alternatively, at least two independent air coolers are to be fitted.

19.7

A defrosting system is to be installed.

21 Cooling Grids

For each refrigerated cargo space over 300 m^3 (10,600 ft³) cooled by cooling grids, the cooling grids are to consist of at least two independent sections so that any one of them may be isolated without affecting operation of the others.

23 Piping Systems

23.1 Design Considerations

23.1.1

Pipes, valves and fittings are to be generally in accordance with the requirements of Part 4, Chapter 6.

23.1.2

Refrigerant piping is to be designed to resist collapse when subjected to the drying procedure described in 6-2-16/1.3.

23.1.3

Where liquid refrigerant is being pumped near its saturation pressure, the refrigerant pump is to have a sufficient net liquid column above the pump centerline to provide the pressure required to cause liquid flow into the pump suction without flashing.

23.1.4

Arrangements for preventing slugs of oil or liquid refrigerant entering the compressor suction are to be provided. Any liquid collected may be returned to the system by satisfactory means.

23.1.5

Bulkhead and deck penetrations of refrigerant/secondary coolant pipes whose working temperature is below the normal ambient temperature are to be constructed so that the pipes do not come in direct contact with the steel members of the ship's structure.

23.1.6

Where liquid refrigerant is circulated through the system by pumps, the system is to be provided with a dedicated, readily interchangeable standby pump capable of replacing, without reduction in capacity, any operating pump.

23.1.7

Where secondary coolant is circulated through the system by pumps, the system is to be provided with a dedicated, readily interchangeable standby pump capable of replacing, without reduction in capacity, any operating pump.

23.1.8

Brine tanks are preferably to be of a closed type and have ventilating pipes led to the weather away from ventilation inlets and openings to accommodation spaces. Wire gauze is to be fitted to the ventilating pipe outlets.

23.1.9

Where open type brine tanks are installed, the compartments in which they are located are to be adequately ventilated to prevent accumulation of objectionable vapor.

23.1.10

Where necessary, the refrigeration units may be interconnected on the discharge and/or suction side to facilitate operation of the individual compressors with each condenser and, where applicable, with each brine cooler.
23.3 Corrosion Prevention and Insulation

23.3.1

Refrigerant/secondary coolant pipes within refrigerated chambers or embedded in the insulation and all refrigerant/secondary coolant pipes with working temperatures below ambient temperature are to be protected externally against corrosion. Steel pipes are to be galvanized on the outside or protected against corrosion by other equally effective methods approved by the Bureau.

23.3.2

Brine pipes are not to be galvanized internally.

23.3.3

Pipes welded or threaded in place, such as at pipe and flange connections, are to have their corrosion protection reinstated by an approved method.

23.3.4

All pipes indicated in 6-2-6/23.3 as well as valves and fittings whose working temperature is below the normal ambient temperature are to be effectively insulated. The insulation is to be sufficiently thick to prevent the formation of moisture on the pipe surface at a relative humidity of 90%. The insulation is to be free of discontinuities and must be protected where there is a danger of damage, and its final layer must be resistant to moisture penetration.

23.5 Valves and Fittings

23.5.1

Gate valves, ball valves and plug cocks are not to be fitted in the liquid refrigerant circuit unless consideration is given to the expansion of liquid trapped in the valve cavities when the valve or cock is closed.

23.5.2

Valves in the refrigerant circuit are to be fitted with removable sealing caps or other alternative means to retain any leakage that may pass through valve glands and seals. However, remote controlled valves or manual valves subject to regular operation, such as manifold valves, will be subject to special consideration and may be accepted without the removable caps.

23.5.3

Filters, strainers and refrigerant dryers are to be provided with isolation arrangements to enable their cleaning/replacement.

23.5.4

Automatic expansion valves are to be provided with manually operated bypass valves. Alternatively, duplicate automatic expansion valves will be accepted.

25 Tests and Inspections

25.1 Compressor

25.1.1

The Surveyor is to verify the materials used but need not witness the material tests.

25.1.2

The pressure boundary components of the compressor are to be hydrostatically tested in the presence of the attending Surveyors to 1.5 times the design pressure.

25.1.3

In addition to the hydrostatic test specified in 6-2-6/25.1.2, the compressors are to be leak tested in the presence of the attending Surveyor at the design pressure on the LP and HP side, as appropriate. This leak test may be performed using the mediums referenced in 6-2-16/1.1.

25.1.4

After completion of the tests referred to in 6-2-6/25.1.2, functional and capacity testing of the compressor is to be carried out at the manufacturer's plant in the presence of the Surveyor in accordance with an approved program. The functional tests should include recording of the refrigerant used, temperatures, pressures, testing of alarms and shut down, pressure relief devices and vibration measurements to ensure that the limits do not exceed those proposed by the manufacturer and that other features relating to the performance of the equipment are in accordance with the specification. Similarly, during the capacity test, power consumption and the refrigeration loads are to be recorded.

A certificate documenting the functional and capacity tests that were performed will be issued by the attending Surveyor.

25.3 Pressure Vessels

25.3.1

Pressure vessels including condensers, coolers and heaters under refrigerant pressure are to be hydrostatically tested by the manufacturer in the presence of the attending Surveyor to a test pressure equal to 1.5 times the design pressure. The condenser, heaters and evaporators are to be pressure-tested on both tube and shell sides.

25.3.2

Pressure vessels in the refrigerant and the brine system are to be leak-tested and the procedure followed is to be in accordance with 6-2-16/1.1.3.

25.5 Piping

25.5.1

After fabrication (e.g., bending, attachment of flanges and fittings, etc.), all refrigerant and brine pipes are to be subjected to a hydrostatic test pressure at 1.5 times the design pressure in the presence of the attending Surveyor. Alternatively, the test may be performed pneumatically using a suitable inert gas such as nitrogen.

25.5.2

The refrigerant and the brine piping are to be leak-tested at the design pressure in accordance with the procedures in 6-2-16/1.1.3.

25.5.3

For tests after installation, refer to Section 6-2-16.

25.7 Pumps

25.7.1

Refrigerant pumps and brine pumps are to be tested at the manufacturer's plant in the presence of the Surveyor. The pumps are to meet the hydrostatic and capacity test requirements of 4-6-1/7.5.2.

25.7.2

The refrigerant and the brine pumps are to be leak-tested at the design pressure in accordance with 6-2-16/1.1.3.

25.9 Relief Devices

The setting of the relief devices are to be verified by the Surveyor.

This Page Intentionally Left Blank

6

CHAPTER 2 Vessels Intended to Carry Refrigerated Cargoes

SECTION 7 Ancillary Systems

Note: Text in *italics* is considered necessary as conditions of classification (i.e., compulsory requirements). (See 6-2-1/5.3.)

1 Cooling Water Systems

1.1 Design Considerations

1.1.1

Cooling water pipes, valves and fittings are to be in accordance with the requirements of Part 4, Chapter 6.

1.1.2

The supply of cooling water for condensers is to be available from at least two independent sea connections, one preferably to be on the port and the other on the starboard side.

1.1.3

The maximum cooling water velocity through each condenser is not to exceed manufacturer's recommendations.

1.3 Pumps

At least two independent pumps are to be installed for the supply of cooling water to the refrigeration unit(s), one of which is to act as a standby. The standby pump may be used for other general service duties, except oil and bilge systems, provided its capacity is sufficient to simultaneously maintain the required supply of cooling water to the refrigeration unit(s).

1.5 Shell Connections

1.5.1

Shell connections are to be in accordance with the requirements of 4-6-2/9.13.

1.5.2

If the elevation of the condenser relative to the light water line is such that the manufacturer's recommended back pressure cannot be maintained in the overboard discharge line, then the overboard valve is to be of a spring loaded type.

3 Bilge and Drainage Systems

The refrigerating machinery space is to be efficiently drained. Bilge arrangements are to be in accordance with 4-6-4/5.

PART

6

CHAPTER 2 Vessels Intended to Carry Refrigerated Cargoes

SECTION 8 Fire Extinguishing Systems and Equipment

Note: Text in *italics* is considered necessary as conditions of classification (i.e., compulsory requirements). (See 6-2-1/5.3.)

1 Cargo Spaces

Refrigerated cargo spaces are to be provided with a fixed fire extinguishing system complying with the requirements of 4-7-2/7.1.1. Where gas smothering system is used, the arrangements are to be in accordance with 4-7-3/3.

3 **Refrigeration Machinery Spaces**

Where refrigeration machinery is located in a dedicated space, at least two portable fire extinguishers complying with 4-7-3/15 are to be provided in the space. One of the required portable fire extinguishers is to be stowed near the entrance to the space.

5 Refrigerant Storage Space

Spaces other than those referred to in 6-2-8/3 above, which contain refrigerant cylinders, are to be provided with at least one portable fire extinguisher complying with 4-7-3/15, which is to be stowed near the entrance to the space.

This Page Intentionally Left Blank

PART

6

CHAPTER 2 Vessels Intended to Carry Refrigerated Cargoes

SECTION 9 Electrical Systems

1 General

Except as noted herein, compliance with Part 4, Chapter 8, as applicable, is required.

3 Cable Installation

Cables are not to be installed behind nor imbedded in the insulation. They may, however, pass through such insulation at right angles, provided they are protected by a continuous pipe with a stuffing tube at one end. For deck penetrations, these stuffing tubes are to be at the upper end of the pipe and for bulkhead penetrations, on the un-insulated side of the bulkhead.

5 Electrical Installation in Refrigerating Machinery Room and Cargo Hold

5.1

Electrical accessories such as switches, detectors, junction boxes, etc. installed in the refrigerating machinery room are to have IP44 enclosure and all other electrical equipment is to have IP22 enclosure.

5.3

Electrical equipment installed in the cargo holds is to be protected from mechanical damage. All electrical equipment in the cargo holds is to have IP55 enclosure.

5.5

Electrical equipment installed in the ammonia refrigerating machinery spaces is to be in accordance with 6-2-11/13.3.

7 Power Supply

Where the refrigerating plant is electrically driven, the electrical power is to be available from at least two generating sets. The capacity of the generating sets is to be such that, in addition to ensure the operation of the services essential for the propulsion and safety of the ship and services for providing minimum comfortable conditions of habitability, as required by 4-8-2/3.1, the following conditions are met:

7.1

Aggregate capacity of the generators is to be sufficient to supply the power to the refrigerating plant(s) mentioned in 6-2-6/3.3.2(a) or 6-2-6/3.3.3(a). Where the vessel is designed for the simultaneous carriage of integral refrigerated containers on deck, the aggregate capacity of the generators is to be sufficient to supply power to the refrigerated cargo spaces mentioned above and all of the electrical power sockets for these containers, to enable all modes of operations including cool down.

7.3

Where, due to operational requirements, it is not necessary to supply power simultaneously to all the electrical sockets, where fitted, for the refrigerated containers on deck, alternative aggregate capacity of power supply from the generators to that required in 6-2-9/7.1 will be considered.

7.5

With any one generator out of action, the remaining generator(s) are to be capable of supplying sufficient power to the refrigerating plant(s) and/or electrical power sockets in order to achieve and maintain the required steady state temperature in all of the loaded cargo spaces and/or containers when operating under the conditions specified in 6-2-6/3.3.1, subject to the applicability of 6-2-9/7.3.

9 Transformer

9.1

Where the refrigerating plants are supplied by power through transformers or converters, the system is to be so arranged as to ensure continuity of the power supply to the refrigerating plants, as follows:

With any one transformer or converter out of action, a standby transformer or converter is to be capable of supplying the power to the refrigerating plants. Alternatively, this requirement may be satisfied, provided there are alternative arrangements for supplying power to the circuit upon failure of the transformer or converter.

11 System Design

Coordinated tripping is to be provided between feeder and branch circuit protective devices for refrigerating plants.

13 Testing and Inspection

13.1 Motor Control Centers and Distribution Boards

Motor control centers used for refrigerant plants are to be tested in the presence of the Surveyor in accordance with 4-8-3/5.11.3.

For distribution boards, the tests as per 4-8-3/5.11.3 may be carried out by the manufacturer whose certificate of tests will be acceptable.

13.3 Motors

Motors of 100 kW (135 hp) and over are to be tested in the presence of the Surveyor in accordance with 4-8-3/Table 3. For motors below 100 kW (135 hp), the tests as per 4-8-3/Table 3 may be carried out by the manufacturer whose certificates of tests will be acceptable.

13.5 Electrical Installation

Testing of the electrical installation for refrigeration machinery is to be carried out in accordance with 4-8-4/29.

This Page Intentionally Left Blank

6

CHAPTER 2 Vessels Intended to Carry Refrigerated Cargoes

SECTION 10 Instrumentation, Control and Monitoring

Note: Text in *italics* is considered necessary as conditions of classification (i.e., compulsory requirements). (See 6-2-1/5.3.)

1 General

1.1

The control and monitoring systems are to ensure that the selected carriage temperature for the individual cargo spaces is maintained during all service conditions. The monitoring system is to be provided for refrigerating machinery and refrigerated cargo space temperatures.

1.3

For fruit carriers, the monitoring and control systems are additionally to ensure that the CO_2 levels in cargo spaces are continuously monitored and the levels selected are not exceeded during all service conditions.

3 Control

3.1

Control, instrumentation and monitoring necessary for operation may be provided at or in the proximity to the refrigeration machinery, the centralized control and monitoring station of the propulsion machinery, the navigation bridge or other similar spaces.

3.3

Where the refrigeration machinery is remotely controlled from the centralized control and monitoring station of the propulsion machinery, the navigation bridge or other similar spaces, means of independent controls and instrumentation and monitoring necessary for operation are to be provided at or in the proximity to the refrigeration machinery, together with means provided locally to disconnect or override associated remote controls.

3.5

See 6-2-10/Table 1 for required displays and alarms.

3.7

The control and monitoring for the temperature of circulating air entering and leaving each air cooler is to be independent from each other.

5 Temperature Measuring Equipment

5.1 Minimum Number of Sensors

For guidance, the minimum required number of sensors in a refrigerated space is to be determined based on the capacity and geometry of the space, as follows:

4 for up to 250 m³ (8,828 ft³) space.

5 for up to 400 m³ (14,124 ft³) space.

6 for up to 700 m³ (24,178 ft³) space.

7 for up to 1200 m³ (42,373 ft³) space.

8 for up to 1900 m³ (67,090 ft³) space.

10 for up to 2800 m³ (98,870 ft³) space.

5.3 Location of Sensors

In addition to 6-2-10/5.1, in each refrigerated space with forced air circulation through air coolers, at least one sensor is required for the circulating air. See also 6-2-10/3.7.

5.5 Remote Temperature Measurement

5.5.1

Sensors in refrigerated spaces are to be arranged in such a way that temperature reading is possible without entering the spaces.

5.5.2

Each refrigerated cargo space is to be provided with at least two temperature measuring instruments with separate power supply such that the temperature measurement of the space is possible in the event of a fault in any one of the measuring instruments.

5.5.3

Temperature reading devices or similar means are to be fitted for maintaining a log of cargo hold temperature.

5.5.4

Where temperature measuring systems are supplied by an individual source of power supply, such as transformer, converter or battery, a stand-by source of power is to be provided. Alternatively, this requirement may be satisfied, provided there are alternative arrangements for supplying power to the circuit upon failure of the transformer, converter or battery.

5.5.5

Number and arrangement of the remote temperature measuring system sensing elements is to comply with 6-2-10/5.1 and 6-2-10/5.3. The temperature sensing elements are to be permanently connected to their instruments and well-protected against damage.

5.7 Accuracy, FSD (Full Scale Deflection) Range

5.7.1

The measuring range of the system is to cover the entire anticipated temperature range plus an additional $\pm 5^{\circ}$ C (9°F).

5.7.2

The accuracy of the temperature measuring equipment is to be within ± 0.5 °C (0.9 °F) for frozen cargo and ± 0.2 °C (0.4 °F) for fruit.

5.7.3

Accuracy of instrumentation to a value higher than that stated in 6-2-10/5.7.2 above is required by some Administrations, depending on the cargoes carried. Accordingly, due attention is to be given to the requirements of various Port States during the design stages of the temperature monitoring and control systems, if it is intended for the vessels to transport cargoes to and from these ports.

7 CO₂ Measuring Equipment

All refrigerated cargo spaces intended for carriage of fruit are to be fitted with permanently installed equipment for indication of CO_2 content. The sensors are to be suitably positioned in the cargo spaces and are to be located away from the fresh air ducts.

9 Refrigerant Leakage Detection

9.1

Where the quantity of the refrigerant charge in the largest system exceeds the following per unit volume of the spaces in which it is located, the spaces containing the refrigerating machinery, and in the case of a direct expansion system, the refrigerated cargo spaces, are to be provided with a refrigerant leakage detection system complying with 6-2-10/9.3 and 6-2-10/9.5.

Refrigerant	Concentration, kg/m ³ (lb/ft ³)			
R22	0.14 (0.009)			
R134a	0.25 (0.016)			
R404a	0.48 (0.030)			
R407a	0.33 (0.021)			
R407b	0.35 (0.022)			
R407c	0.35 (0.022)			
R410a	0.44 (0.028)			
R410b	0.43 (0.027)			
R507	0.49 (0.031)			

9.3

The Refrigerant vapor detection system is to give an alarm and start mechanical ventilation in the event of refrigerant concentration exceeding the time-weighted average to which personnel may be repeatedly exposed to in the spaces.

9.5

The refrigerant vapor detection system referenced in 6-2-10/9.3 is also to be arranged to give an alarm and start mechanical ventilation when the refrigerant concentration exceeds a level where oxygen levels in the refrigerant machinery space are below 19.5% by volume. Alternatively, sensors for monitoring the oxygen level in the machinery space may be fitted and arranged to give an alarm should oxygen level drop below 19.5%.

11 Instrumentation and Monitoring

The indications and alarms in accordance with 6-2-10/Table 1 are to be provided at or in the proximity to the refrigeration machinery, the centralized control and monitoring station of the propulsion machinery, the navigation bridge or other similar spaces.

13 Alarm Call Button

All refrigerated spaces and air cooler rooms are to be fitted with at least one alarm call button located near the exit.

15 Automatic Controls

15.1 General

Where automatic control is fitted, compliance with the following is required. Additionally, the arrangements are to be in compliance with 6-2-10/1 through 6-2-10/13.

The control systems are to be designed to automatically maintain the selected carriage temperature in the individual cargo spaces and, additionally, for fruit carriers, the CO_2 level.

15.3 Control and Monitoring

15.3.1

The alarms and the indication as listed in 6-2-10/Table 1 are to be provided at the locations mentioned in 6-2-10/3.1.

15.3.2

Instrumentation and means of independent control and monitoring necessary for operation are to be provided at or in the proximity of the refrigeration machinery.

15.3.3

Adequate arrangements are to be provided to disable the automatic control mode and restore manual control.

15.5 Alarm Systems

15.5.1

Alarm systems are to be of the self-monitoring type and designed so that a fault in the alarm system will cause it to fail to the alarmed condition.

15.5.2

Alarming of other faults that may occur during the acknowledgment process is not to be superseded by such action.

15.5.3

Alarm systems are to be provided with effective means of testing.

15.7 Computer Based Systems

15.7.1

Where alarms are displayed on a visual display unit, they are to appear in the sequence in which the incoming signals are received and are to have priority, regardless of the mode the visual display unit is in.

15.7.2

The computer program and associated data considered to be essential for the operation of the system is to be stored in non-volatile memory.

15.7.3

Software is to be validated in accordance with a national, international or other recognized standard and demonstrated for verification.

15.9 Testing of Equipment

Testing of equipment associated with automatic or remote control systems, monitoring systems and computer-based systems is to be in accordance with Section 4-9-7.

For equipment that has been certified by the Bureau on an individual basis or certified under the ABS Type Approval Program, the tests previously carried out for compliance with Section 4-9-7 will be accepted, provided that the equipment being proposed is identical to the one previously tested.

17 Testing after Installation on Board

The following tests are to be carried out to the satisfaction of the Surveyor:

17.1

Local control of the refrigerating machinery is to be demonstrated. This is to include a demonstration of independent manual control and the disconnection or override of the automatic control system.

17.3

Where automatic control or remote control is provided, the ability to control from a remote control station is to be demonstrated. This is to include a demonstration to disable the automatic control mode and restore manual controls.

17.5

The required alarm control systems and displays are to be verified for satisfactory operation at the predefined set points.

17.7

The following equipment or systems are to be tested:

- The accuracy of the temperature measuring equipment in accordance with 6-2-10/5.7.
- CO_2 measuring system for refrigerated cargo spaces in accordance with 6-2-10/7.
- Refrigerant leakage detection system in accordance with 6-2-10/9.
- Alarm call button in accordance with 6-2-10/13.

	Item	Display	Alarm	Remarks
Compressor	Automatic stop		Activated	
	Lubricating oil	*Pressure	Low	Automatic stop (Low pressure)
	Driving motors	Running	Stop	
	Available driving motors	Running	Start	For auto start
	Discharge line - Pressure	*Pressure	High	Automatic stop (High pressure)
	- Temperature	*Temperature	High/Low	Automatic stop (High temp.)
	- Superheat	*Temperature	High	Automatic stop
	Suction line - Pressure	*Pressure	Low	Automatic stop (Low pressure)
	- Temperature	*Temperature	High	
	- Superheat	*Temperature	Low	Automatic stop (Low temp.)
	Intermediate stage (if fitted)	*Pressure	High	Automatic stop (High pressure)
	Brine pumps	Running	Stop	
	Available pumps	Running	Start	For auto start
Brine Lines	Brine cooler - inlet/outlet	*Temperature	High (outlet)	
	Pressure line	*Pressure	Low	
	Header tank	*Level	Low	
	Cooling water pumps	Running	Stop	
Condenser	Available cooling water pump	Running	Start	
Condenser	Cooling water - inlet	*Temperature		
	Cooling water - outlet	*Temperature	High	
Refrigerant receiver	Level	*Level	High/Low	
Refrigerating Machinery space	O ₂ content (or, excessive refrigerant vapor content)		below 19.5% (excessive)	
Refrigerant leakage	Concentration in Refrigerating machinery space		Leakage (ppm above as per 6-2-10/9.3)	
	Concentration in Refrigerated spaces		Leakage (10 ppm)	Direct system
	Detection system		Failure	
Refrigerated spaces	Temperature measuring	Temperature	Deviation from set point	
	Left/Right hand cooler delivery air/return air	Temperature	Deviation from set point	
	CO ₂ content	Percentage	Higher than the set point	For fruit carriers
	Fresh air fan (Full/Half speed)	Stop/Running/ Auto	Failure	
	Ventilation fan (Full/Half speed)	Stop/Running	Failure	For fruit carriers
Relative Humidity	Percentage		Deviation from set point	
Defrost	Time duration		Disabled	

TABLE 1 Instrumentation and Alarms

Note: Those devices marked (*) are to be provided at or in the proximity to the refrigeration machinery.

This Page Intentionally Left Blank

6

CHAPTER 2 Vessels Intended to Carry Refrigerated Cargoes

SECTION 11 Ammonia Refrigeration System

Note: Text in *italics* is considered necessary as conditions of classification (i.e., compulsory requirements). (See 6-2-1/5.3.)

1 General

1.1

Refrigerating machinery using ammonia is to be designed, constructed and installed in accordance with the requirements of this Section and other applicable requirements the Rules.

1.3

Ammonia may be used only as a primary refrigerant in indirect refrigeration systems.

1.5

Ammonia refrigerant for use in direct expansion systems on-board refrigerated fish carriers will be specially considered subject to an assessment of all the features necessary to ensure the safety of the installation.

3 Design Considerations

3.1 Location of Refrigeration Machinery

3.1.1

Refrigerating units and associated equipment which contain ammonia are to be located in a dedicated space.

3.1.2

The dedicated space referred to in 6-2-11/3.1.1 is to be separated by gastight steel bulkheads and decks from other spaces.

3.3 Access and Openings

3.3.1

Access doors to the refrigerated machinery space are to be in accordance with the following requirements:

3.3.1(a) A minimum of two access doors located as far apart as possible are to be provided, one of which is to lead directly to the open deck. Water screens are to be provided above access doors, operable manually from outside the compartment.

3.3.1(b) The access doors are to be gastight and self closing with no holdback arrangements and are to open outward from the refrigeration machinery space.

3.3.1(c) Access doors are not to open to the accommodation spaces.

3.3.1(d) Where one access is from a Category "A" machinery space, it is to be fitted with double door separation having a minimum space of 1.5 m (4.9 ft) between each door. The doors are to be self closing and gastight with no holdback arrangements and the space between each door is to be provided with an independent ventilation system, the exhaust from which is to be led to atmosphere. Alternative access arrangements will be specially considered, provided a similar level of safety is maintained.

3.3.2

Access corridors leading to the refrigerating machinery space are to be ventilated by means of an independent mechanical exhaust system. This will not be required if the ventilation system required by 6-2-11/3.5 is also arranged to draw from the access corridors.

3.3.3

Duct, pipe and cable penetrations of bulkheads and decks of the ammonia refrigerating machinery spaces are to be made gastight.

3.5 Ventilation of the Refrigeration Machinery Space

The ammonia refrigerating machinery space is to be efficiently ventilated by means of mechanical exhaust ventilation designed in accordance with the following requirements:

3.5.1

The ventilation system is to be independent of other shipboard ventilation systems.

3.5.2

The ventilation system is to be designed for continuous operation.

3.5.3

The capacity of the ventilation system is to be of sufficient capacity to ensure at least 30 air changes per hour based on the total empty volume of the space.

3.5.4

Means are to be provided for stopping the ventilation fans and closing the ventilation openings from a readily accessible position.

3.5.5

Air inlet openings are to be positioned as low as practicable in the spaces being ventilated and exhaust openings as high as practicable to ensure that no ammonia accumulates in the space.

3.5.6

Exhaust duct outlets are to be positioned at least 10 m (33 ft.) from air intake openings, openings to accommodation spaces and other enclosed areas, and at least 2 m (6.5 ft.) above the open deck.

3.5.7

Ventilation fans are to be of non-sparking construction in accordance with 4-8-3/11.

3.7 Emergency Ventilation of Ammonia Refrigeration Machinery Space

Ammonia refrigerating machinery spaces are to be provided with a mechanical exhaust type gas evacuation system or a water deluge system designed to quickly dissipate a catastrophic leak of ammonia to reduce the risk of fire and explosion. The system is to be designed and constructed in accordance with the following requirements:

3.7.1

The gas evacuation system is to be independent of other shipboard ventilation systems; however, it need not be independent of the ventilation system required in 6-2-11/3.5.

3.7.2

The gas evacuation system or the water deluge system is to be arranged to automatically start when the concentration of ammonia in the space exceeds 300 ppm.

3.7.3

The combined capacity of the ventilation and gas evacuation fans is to be based upon the larger of the following

[A] A volume to ensure 40 air changes per hour based on the total empty volume of the space;

or;

[B] The capacity calculated using the following formula:

$$Q = k G^{0.5}$$

where

k = 0.07 (3.66) Q = minimum combined capacity, in m^3/s (ft³/s) G = mass of ammonia in the largest refrigerating unit, in kg (lbs)

3.7.4

The system is to be provided with a scrubber of sufficient capacity to absorb the total ammonia charge in the largest refrigerating unit.

3.7.5

The concentration of ammonia in the air leaving the scrubber is not to exceed 20 ppm.

3.7.6

The water outlet from the scrubber is to have the capability of discharging either overboard or to the water dump tank, depending upon whether the vessel is in port or at sea.

3.7.7

Arrangements are to be provided to add measured amounts of sulphuric acid to the scrubber tank water supply to prevent the precipitation of salts when ammonia is present in the water.

3.7.8

The gas evacuation system controls are to be positioned outside of the space.

3.7.9

The exhaust duct outlets are to be positioned at least 10 m (33 ft.) from air intake openings, openings to accommodation spaces and other enclosed areas, and at least 2 m (6.5 ft.) above the open deck.

3.7.10

Gas evacuation fans are to be of non-sparking construction in accordance with 4-8-3/11.

3.7.11

Where a water deluge system is fitted, the arrangements are to be as follows:

3.7.11(a) The system is to be independent but may also be used for supply to the water screens required by 6-2-11/3.3.1(a).

3.7.11(b) The deluge system is to contain fresh water through a pressurized system.

3.7.11(c) The discharge nozzles in the space(s) protected are to be positioned such that the spray is directed over the entire area containing the Ammonia refrigeration machinery.

3.7.11(d) The pressurized system is to consist of two pumps, a tank with a capacity to maintain discharge for a period of 30 minutes to all of the nozzles simultaneously in the protected space(s), the tank to be fitted with adequate safety relief arrangements, pressure gauge(s), level control and level gauge.

3.7.11(e) Means are to be provided to automatically maintain the required pressure and the water level in the tank. In the event of low pressure or the low level, an audible alarm is to sound in the refrigeration machinery room, refrigeration cargo control room, if fitted, and the engine room.

3.7.11(f) The electrical equipment in the Ammonia refrigeration compartment is to be to IP55 enclosure.

3.9 Drainage of Ammonia Refrigeration Machinery Space

The ammonia refrigerating machinery space(s) is to be fitted with an independent bilge system.

3.11 Emergency Drainage of Ammonia Refrigeration Machinery Space

3.11.1

Coamings of adequate height or other forms of containment are to be provided around each refrigerating unit, capable of holding the total charge of ammonia of that unit. Containment areas are to be fitted with drains of suitable size for rapid drainage of liquid ammonia to a water dump tank.

3.11.2

The water dump tank is to be installed at a position below the level of the refrigerating machinery space and is to comply with the following requirements:

3.11.2(a) The tank is to be used exclusively for ammonia absorption.

3.11.2(b) The tank is to have a sufficient capacity to hold 11 liters (2.9 gal) of water for each kilogram (lb) of ammonia in the largest unit.

3.11.2(c) The tank is to be automatically maintained at the required level at all times. Means to prevent back flow of water is to be provided.

3.11.2(d) A low water level alarm is to be provided.

3.11.2(e) Overflow and drainage arrangements are to be led directly overboard without passing through accommodation or Category A machinery spaces.

3.11.2(f) Vapor which may accumulate above the water level in the tank is to be extracted by means of ventilation arrangements connected to the refrigeration machinery space ventilation system.

3.11.2(g) The tank is to be provided with an inspection and maintenance opening.

3.13 Storage of Ammonia Cylinders

3.13.1

A maximum of 140 kg (308 lb) of reserve ammonia may be stored in the refrigerating machinery space. Reserve ammonia in excess of this amount is to be stored in a separate storage space designed and constructed in accordance with the requirements of this Section, unless 6-2-11/3.13.7 is applicable.

3.13.2

Portable steel ammonia storage cylinders satisfying the requirements of 6-2-6/5.15 are to be stowed in an efficiently ventilated dedicated space.

3.13.3

The ammonia storage space is to comply with the requirements of 6-2-11/3.1.2, 6-2-11/3.3.3 and 6-2-11/3.9.

3.13.4

Access doors to the storage space are to be in accordance with 6-2-11/3.3.1, except that two doors are not required.

3.13.5

The storage space is to be provided with a mechanical ventilation system complying with 6-2-11/3.5. Where the storage space is adjacent to the refrigerating machinery space, a common ventilation system servicing both spaces may be accepted.

3.13.6

Means for secure stowage and handling of the steel storage cylinders are to be provided.

3.13.7

Where due to limited space, the provision of a separate storage space is impracticable, alternative solutions, such as location of the storage cylinders in the space containing the ammonia refrigeration machinery, will be subject to special considerations, provided that the water deluge system and the leakage detection system is extended to take account of the additional ammonia stored in the space.

5 Materials

5.1

Components in contact with ammonia are not to contain copper, zinc, cadmium or alloys of these materials.

5.3

Components of rubber or plastic materials likely to be exposed to ammonia are not to be used.

5.5

Material for sea water cooled condensers is to be corrosion resistant to sea water.

5.7

The internal surfaces of the scrubber and water dump tank referred to in 6-2-11/3.7 and 6-2-11/3.11.2, together with the associated piping, are to be protected against corrosion and chemical attack. This protection is to be suitable to resist the effects from ammonia and sulphuric acid.

7 Personnel Safety Equipment

7.1

An eye wash and shower unit are to be provided immediately outside of the refrigerating machinery room.

7.3

The following safety equipment is to be provided and stored in a readily accessible, protected location outside of the refrigerating machinery room and is to be in addition to the equipment required by 4-7-3/15.5:

- One set of fireman's outfit complying with 4-7-3/15.5.
- One heavy duty adjustable wrench.
- Bottles of boric acid, vinegar and eye cups.

9 Safety Devices

9.1

A rupture disc is not to be used in series with the safety relief valve.

9.3

The discharge from safety relief values on the ammonia side is to be led into the sea below the lightest water line or into the water dump tank near the bottom of the tank.

9.5

Ammonia refrigeration systems are to be provided with automatic air purging devices. The discharge from the purging devices is to be led overboard below the lightest water line or to the water dump tank such that the discharge opening is submerged at all times. Where the connection is lead overboard, the discharge pipe is to be of heavy grade.

9.7

Where condensers are cooled by fresh water which is re-circulated, the fresh water system is to be equipped with pH meters to activate audible and visual alarms in the event of an ammonia leak.

11 Piping Arrangements

11.1

Ammonia pipes are to have provision for expansion and contraction encountered in service. The use of metallic flexible hoses for this purpose will be subject to approval by the Bureau.

11.3

Where flexible bellows are intended to be used in the ammonia refrigerant system, details and test data to show their suitability for the intended service are to be submitted.

11.5

Joints for piping conveying ammonia are to be butt welded, as far as practicable. For pipes up to 25 mm (1 in) nominal diameter, socket welded joints may be accepted. Flanged joints are to be kept to a minimum and precautions are to be taken prior to disconnecting any such joints during repair and maintenance.

11.7

Piping for discharge of cooling sea water from the condenser is to be independent of other sea water piping systems and is to be led directly overboard without passing through accommodations or Category A machinery spaces.

11.9

Oil traps and oil drains are to be provided at the low points of the refrigerant system. Gauge lines and branches to level controls are not to be in locations where oil is likely to accumulate.

11.11

Overboard discharges are to be in accordance with 4-6-2/9.13.

13 Electrical

13.1 General

Except as noted herein, compliance with Section 6-2-9 is required.

13.3 Equipment and Installation in Hazardous Area

Ammonia refrigerating machinery spaces and storage spaces are considered hazardous locations. Electrical equipment and wiring are not to be installed in such locations unless essential for operational purposes. Where electrical equipment is installed in the above spaces, the following conditions are to be met:

13.3.1

Electrical equipment operated in the event of ammonia leakage, such as vapor detection and alarm system, is to be intrinsically safe type.

13.3.2

Emergency lighting fixtures of explosion proof type are to be provided in the above spaces. The switches for the lights are to be double pole type and located outside these spaces.

13.3.3

Electrical motors for gas evacuation fans or ventilation fans, if used for the gas evacuation system, are not to be located in the fan ducts or inside the ammonia refrigerating machinery spaces. They are to be located outside of the hazardous areas.

13.3.4

For electrical equipment other than those referenced in 6-2-11/13.3.1 and 6-2-11/13.3.2, means are to be provided for automatic de-energizing when the concentration of ammonia vapor in the space exceeds 300 ppm.

13.3.5

Cables in these spaces are to be armored and the penetrations are to be through gas tight fittings.

15 Instrumentation, Control and Monitoring

15.1 General

Instrumentation, control and monitoring for the ammonia refrigeration system is to be in accordance with Section 6-2-10 and the following requirements.

15.3 Ammonia Vapor Detection and Alarm System

15.3.1

An ammonia vapor detection and alarm system is to be provided for the following locations:

15.3.1(a) The refrigerating machinery spaces; one detector per 36 m^2 (387 ft^2) of the space floor area.

15.3.1(b) One detector in the exhaust duct of the refrigerating machinery space ventilation system.

15.3.1(c) The access corridors leading to the ammonia refrigerating machinery spaces.

15.3.1(d) One detector in the ammonia storage space.

15.3.2

If the concentration of ammonia exceeds 25 ppm, the detectors are to activate audible and visual alarms. In addition, if the concentration of ammonia exceeds 300 ppm, the detectors in the refrigerating machinery space are to stop the refrigerating plant and activate the gas evacuation system.

15.3.3

Additional ammonia vapor detectors set to provide an alarm in a continuously manned space if the ammonia concentration exceeds 500 ppm are to be provided in the discharge pipes from safety relief valves.

15.3.4

Note that the refrigerant leakage detection system required in 6-2-11/15.3.1 is in lieu of the system required by 6-2-10/9.

15.5 Instrumentation and Alarms

The alarms listed in 6-2-11/Table 1 are to be provided at the locations specified in 6-2-10/3.

Item		Display	Alarm	Remarks
Condenser	Leakage of ammonia into cooling fresh water system	pH Meter	Leakage	Where condensers are cooled by fresh water
Water Dump Tank	Level	Level	Low	
Ammonia Vapor Detection	Location mentioned in 6-2-11/15.3.2		Exceed 25 ppm	
	Discharge pipes from safety relief valves		Exceed 500 ppm	
	Refrigerating plant automatic stop		Stop (300 ppm)	
	Activation of gas evacuation		Activation	

TABLE 1 Instrumentation and Alarms

17 Tests and Inspections

17.1

Gas tightness of openings or doors referred to in 6-2-11/3.3 is to be verified by the attending Surveyor.

17.3

Electrical isolation of the refrigeration equipment at the set limit of 300 ppm of ammonia is to be demonstrated.

17.5

Ventilation air changes are to be verified by the attending Surveyor.

17.7

Satisfactory operational test of the emergency ventilation system is to be verified by the attending Surveyor.

17.9

Ammonia vapor detection and alarm system is to be demonstrated. This is to include a demonstration of the required audible and visual alarms and stopping the refrigerating plant and activation of the gas evacuation system in accordance with 6-2-11/15.3.

17.11

The required alarms and displays are to be verified for satisfactory operation at the predefined set points.

17.13

Automatic de-energizing of non-intrinsically safe electrical equipment required in 6-2-11/13.3.4 is to be demonstrated in the presence of the Surveyor.

6

CHAPTER 2 Vessels Intended to Carry Refrigerated Cargoes

SECTION 12 Controlled Atmosphere Systems

Note: Text in *italics* is considered necessary as conditions of classification (i.e., compulsory requirements). (See 6-2-1/5.3.)

1 General

1.1

The requirements of this Section are applicable to systems installed onboard, either temporary or permanent, for generating nitrogen enriched gases and its supply to the refrigerated cargo spaces and to control the atmosphere in those spaces. Generation and supply of other non-toxic gases for this purpose will be subject to special consideration.

1.3

Portable nitrogen-generating equipment intended to serve multiple refrigerated cargo holds is to comply with all the relevant requirements of this Chapter and is to be approved in consideration with the number of specific refrigerated cargo spaces it is intended to serve.

1.5

The nitrogen-generating equipment is to be designed, manufactured and installed in accordance with good commercial practice and is to be suitable for intended service conditions including the marine environment. All pressure-retaining components are to comply with the requirements of Part 4, Chapter 4 and Part 4, Chapter 6, as appropriate.

3 Design Considerations

3.1

The controlled atmosphere plant is to be able to achieve and maintain the O_2 levels in the designated spaces within a range between 2% and 10% by volume. However, O_2 levels outside of this range will be considered, depending on the cargoes carried.

3.3

The controlled atmosphere plant is to be capable of controlling the CO_2 levels in the designated spaces within a specified range by means of nitrogen purge, mechanical scrubbing or other acceptable means.

3.5

Where CO_2 levels are to be controlled by nitrogen purge, the capacity of the nitrogen generator must take account of the respiration rate of the cargo and the maximum required level of CO_2 which is to be maintained in the designated spaces.

3.7 Capacity

3.7.1

The minimum required nitrogen generator capacity is to be such that the oxygen content in the cargo space can be reduced to a value below 5% within 24 hours after sealing of the cargo space or container, in accordance with the following equation:

Q = 0.07 V

where:

- Q = Hourly nitrogen generating capacity when delivering nitrogen having a purity of 97%, in m³ (ft³), at standard atmospheric conditions of pressure and temperature
- V = General cargo carrier: Total empty volume of all cargo spaces which are to be supplied with nitrogen simultaneously, in m³ (ft³).

Container carrier: Total empty volume of all containers which are to be supplied with nitrogen simultaneously, in m^3 (ft³)

General cargo and container carrier: Sum of the volumes calculated above, in m^3 (ft³).

3.7.2

The required capacity of the nitrogen generator may vary due to variations in types of cargoes, sealing arrangements and other relevant parameters and therefore is to be specified by the designer/Owner. The specified capacity of the system is to be indicated on the submitted plans.

3.9

The nitrogen generator is to be capable of delivering its rated capacity against a back pressure at the cargo space inlet equal to the pressure setting of the PV valve which is protecting that space.

5 Nitrogen Generator Compressor

5.1

Nitrogen-generating systems utilizing compressors are to be provided with two or more compressors and prime movers which together will be capable of delivering the rated capacity. Each compressor is to be sized so that with one compressor out of operation, the system is to be able to maintain the O_2 content in all designated cargo spaces within the range specified in 6-2-12/3.1.

5.3

Alternatively, one compressor and prime mover may be accepted if the compressor is capable of delivering the specified capacity and provided that spares for the compressor and prime mover are carried to enable any failure of the compressor and prime mover to be rectified onboard.

5.5

Materials for crankshafts, connecting rods, cylinders and cylinder covers, housings, rotors and rotor casings of reciprocating and rotary compressors, as applicable, are to be in accordance with the applicable requirements of Part 2, Chapter 3. Materials to other recognized standards will be considered. Material tests need not be witnessed by the Surveyor.

5.7

Air-cooled compressors are to be designed for an air temperature of at least 45° C (113° F). Water-cooled compressors are to be designed for a water temperature of at least 32° C (90° F).

7 Location and Access for Compartments Containing Gas Generating Equipment

7.1

The gas generating equipment is to be located in a separate gas generator compartment or in a container located on the open deck.

7.3

Where the gas generating equipment is located in a dedicated gas generator compartment, the following requirements are to be met:

7.3.1

Equipment for generation, storage, distribution and regulation of controlled atmosphere gases only are to be located in such a space.

7.3.2

Access to this space is to be provided only from the open deck.

7.3.3

The space is to be separated by gastight steel bulkheads and decks from the adjacent spaces.

7.3.4

All penetrations of the space boundaries are to be made gas tight.

7.3.5

The space is to be provided with an independent mechanical ventilation system of the exhaust type giving at least 20 air changes per hour based on total volume of the space.

7.3.6

Ventilation ducts from this space are not to pass through accommodation spaces, service spaces, machinery spaces or control stations

7.3.7

All ventilation outlets from space are to be located at least 2 m (6.5 ft) above the open deck and 5 m (16.5 ft) away from air inlets and openings to accommodation spaces, service spaces, machinery spaces and other similar manned spaces.

7.3.8

Means for stopping ventilation fans and closing all of the openings to the gas generator compartment are to be provided from outside of the space.

7.3.9

Notices are to be posted to indicate that this area is a dangerous area and may contain a level of oxygen which will cause asphyxiation and will not support human life due to presence of an inert gas.

7.3.10

Means are to be provided for stopping the gas generator from outside of the space.

7.5

Where the gas generating equipment is located in a container positioned on the open deck, the following requirements are to be met:

7.5.1

The container is to be provided with a mechanical ventilation system of the exhaust type giving at least 20 air changes per hour based on total volume of the container.

7.5.2

The outlets of the ventilation exhaust ducts from the container are to be located such that the exhaust cannot enter enclosed spaces on the vessel.

7.5.3

Means for stopping the ventilation fans and closing all of the openings to the gas generator container are to be from outside.

7.5.4

Unrestricted access to the container is to be possible under all loading conditions.

7.5.5

Two portable fire extinguishers complying with 4-7-3/15.1 are to be provided inside the container, of which one is to be stowed near the entrance to the container. Where the compressors are driven by internal combustion engines and the fuel tanks are located inside the container, an approved fixed fire extinguishing system complying with 4-7-3/3 may be required, depending upon the arrangement.

7.5.6

Notices are to be posted to indicate that the container is a dangerous area and may contain a level of oxygen which will cause asphyxiation and will not support human life due to presence of an inert gas.

7.5.7

Means are to be provided for stopping the gas generator from outside of the container.

7.5.8

The container is to be properly secured to the vessel. The container is to be designed considering proper support for the equipment and is to be suitable for the marine environment. In this regard, reference may be made to the ABS Guide for Certification of Container Securing Systems, the ABS Rules for Certification of Cargo Containers and the available certifications contained therein.

9 Gas and Compressed Air Piping System

9.1 Installation

9.1.1

Where flexible hoses on deck are intended to be used for the supply of nitrogen gas to the refrigerated cargo spaces, they are to be of an approved type complying with the requirements of 4-6-2/5.7 Means are to be provided for protecting these hoses against damage.

9.1.2

Vessels utilizing either portable or fixed nitrogen generation equipment are to be fitted with a permanently installed piping system complying with Part 4, Chapter 6 for the supply and distribution of nitrogen (N_2) gas. A positive closing isolation valve is to be fitted in the gas supply line at the inlet to the refrigerated cargo space. This valve arrangement is to be in accordance with 6-2-12/9.3.1 or 6-2-12/9.3.2.

9.1.3

Exhaust of O_2 and N_2 enriched gases from nitrogen generators are to be led to a safe location in the weather, at least 2 m (6.5 ft) above the open deck and 5 m (16.5 ft) away from ventilation inlets and openings to enclosed spaces

9.1.4

Gas pipes are not to pass through accommodation spaces, ducts or tunnels.

9.1.5

Gas pipes passing through service, machinery and control spaces are to be led through gas tight pipes.

9.3 Valve and Fittings

9.3.1

Each gas inlet line to an individual controlled atmosphere space is to be equipped with two shut-off values and an intermediate vent value. Discharge from the vent value is to be led to a safe location in the weather, at least 2 m (6.5 ft) above the open deck and 5 m (16.5 ft) away from ventilation inlets and openings to enclosed spaces. The shut-off values are to be provided with arrangements for locking in the closed position.

9.3.2

If a portable nitrogen generating plant is used, the arrangement in 6-2-12/9.3.1 may be dispensed with if it is not possible to supply nitrogen to more than one space at a time. In this case, each permanent gas inlet line is to be equipped with a screw down non return valve provided with arrangements for locking it in the closed position.

175

9.3.3

Filters are to be provided in the air supply to membrane separators and pressure swing adsorption carbon beds to ensure filtration of oil, debris and water particulate.

11 Safety Relief Devices

11.1

Safety relief devices are to be provided in each section of pipe that may be isolated by valves and may build up a pressure in excess of the design pressure. Discharges from relief valves on gas lines are to be led to the weather, at least 2 m (6.5 ft) above the open deck and 5 m (16.5 ft) away from ventilation inlets and openings to enclosed spaces.

11.3

Each air compressor for the nitrogen generating plant is to be provided with a relief valve on the discharge side.

11.5

Pressure vessels with isolating valves are to be equipped with a pressure relief valve set to relieve at a pressure not greater than the design pressure.

13 Cargo Spaces Under Controlled Atmosphere and Adjacent Spaces

13.1 General

13.1.1

Where the tween-deck spaces within cargo holds are fitted with separate means of maintaining controlled atmosphere conditions, each tween-deck space is to be considered an independent gas tight compartment. For container carriers where the containers stowed under deck are supplied with a low oxygen atmosphere, each container is to be considered a gas tight compartment.

13.1.2

Each cargo space under controlled atmosphere conditions is to be made gas tight, as far as practicable The arrangements are to be such as to ensure that when cargo space is pressurized with an over pressure of 20 mm of water column, the time taken for a 40% pressure drop is greater than 16 minutes.

13.1.3

Hatch covers and doors to spaces under controlled atmosphere are to be provided with locking arrangements and warning notices informing about the low oxygen atmosphere.

13.1.4

Warning notices are to be posted at all openings to spaces under controlled atmosphere to prevent inadvertent opening while the space is under the controlled atmosphere.
13.3 Pressure and Vacuum Considerations

13.3.1

Each cargo space or compartment under controlled atmosphere is to be provided with a pressure and vacuum relief valve (PV valve) to limit the positive and negative pressure below that for which the space is designed.

13.3.2

The pressure relieving capacity of the PV valve is to be such as to ensure that the pressure in the space does not exceed the design limits referred to in 6-2-12/13.3.1 above, when the gas generating unit is delivering at its maximum capacity to a single cargo space or compartment. Consideration is also to be given to pressure changes caused by defrost cycles.

13.3.3

Outlets of PV values are to be located at least 2 m (6.5 ft.) above the open deck and 5 m (16.5 ft.) away from air inlets and openings to accommodation spaces, service spaces, machinery spaces and other similar manned spaces.

13.3.4

The PV values are to be of a type suitable to satisfy the requirements of 6-2-12/13.3.1 and are to be capable of operating at ambient temperatures of $0^{\circ}C$ ($32^{\circ}F$) or less.

13.3.5

Arrangements for the protection of cargo spaces or compartments against over- or underpressure other than those referred to above will be the subject of special consideration.

13.5 Bilge and Drainage Arrangements

13.5.1

Liquid sealed traps on drains from cargo spaces, air cooler trays, etc. are to have sufficient liquid head to withstand the design over pressure when the Controlled Atmosphere system is in operation. Ship motions and over pressure of air circulation fans are to be considered when determining the required liquid head.

13.5.2

The liquid in the liquid seal traps is to be of a type that will not freeze or evaporate under any ambient condition.

13.5.3

Spaces under controlled atmosphere are not to have bilge wells or drain tanks common with spaces not intended for controlled atmosphere.

13.5.4

Where it is intended to gain access to the tween-deck spaces referred to in 6-2-12/13.1.1, any open-ended interconnecting pipe work between such spaces is to be arranged to prevent nitrogen gas from escaping from one gas tight space to another.

13.7 Ventilation

13.7.1

The ventilation inlets and outlets of cargo spaces under controlled atmosphere are to be provided with positive closing gas tight valves.

13.7.2

All ventilation outlets from spaces under controlled atmosphere are to be located at least 2 m (6.5 ft.) above the open deck and 5 m (16.5 ft.) away from air inlets and openings to accommodation spaces, service spaces, machinery spaces and other similar manned spaces.

13.7.3

Suitable arrangements for gas freeing the spaces under controlled atmosphere conditions are to be provided. Air circulation and ventilation fans may be used for this operation. The ventilation outlets used for gas freeing are to be directed vertically upwards.

13.7.4

Compartments other than tanks, void spaces or other similar areas where personnel do not normally have access, which are adjacent to refrigerated cargo spaces under controlled atmosphere, and other normally accessible spaces containing gas piping where gas leakage may create an oxygen deficient atmosphere, are to be provided with permanent mechanical ventilation systems of the positive pressure type with a capacity of at least 2 air changes per hour based on total volume of the space. The ventilation is to be able to be controlled from outside of the space. The permanent ventilation outlets are to be located in accordance with 6-2-12/13.7.2.

13.7.5

Cargo spaces with containers under controlled atmosphere which are required to be entered by personnel are to be provided with ventilation arrangements which are capable of maintaining a minimum of 19% oxygen (by volume) throughout the space when operating under the conditions specified in 6-2-12/3.5. Ventilation rate calculations are to be based upon a 100% gas leakage rate from the containers into the cargo space. The ventilation is to be able to be controlled from outside of the space. The permanent ventilation outlets are to be in accordance with 6-2-12/13.7.2.

15 Instrumentation, Control and Monitoring

15.1 General

15.1.1

In addition to Section 6-2-10, compliance with the following is required.

15.1.2

Within the specified ranges, the levels of O_2 and CO_2 are to be able to be maintained with an accuracy within $\pm 0.2\%$.

15.1.3

A permanently installed monitoring system is to be arranged to display the O_2 and CO_2 content in all spaces under controlled atmosphere. The equipment for measuring CO_2 content may be the same as that required in 6-2-10/7.

15.1.4

Injection of nitrogen and removal of CO₂ may be arranged either manually or automatically.

15.3 Sampling

15.3.1

The permanently installed monitoring system is to be provided with independent sampling lines or gas sensors for each cargo space under controlled atmosphere.

15.3.2

Where the sampling lines are connected to a monitoring unit which is located in an enclosed space, that space is to be ventilated at a rate which is at least equivalent to the sampling flow rate.

15.3.3

The exhaust gases from measuring and analysis devices are to be discharged to a safe location on the open deck without creating a back pressure. The exhaust outlets are to be positioned in accordance with 6-2-12/13.7.2.

15.3.4

Sampling line arrangements are to be such as to prevent condensation and freezing of water in the lines under all operating conditions. Inlets of sampling lines are to be provided with filters to prevent dirt and debris entering the lines.

15.3.5

In addition to the sampling line or gas sensor required in 6-2-12/15.3.1, another closeable sampling line is to be provided for each cargo space under controlled atmosphere. This line is to be arranged for attachment of portable O_2 and CO_2 measuring devices as close as possible to the space served.

15.3.6

Portable equipment for measuring O_2 and CO_2 is to be available onboard at all times.

15.5 Analyzing

15.5.1

If an automatic control system is installed, gas analyzing equipment independent from the one used by the monitoring system is required. Separate gas sampling lines are to be provided for both systems.

15.5.2

Where a gas monitoring system with sequential analyzing is arranged, the system is to be designed so that each measuring point is analyzed at hourly intervals or other suitable duration specified by the Owner/builder. The instruments are to clearly indicate the space being analyzed. Direct readout of the gas quantity in any space under controlled atmosphere is to be available on demand.

15.5.3

Gas analyzing equipment is to be capable of self-calibration and manual calibration with known gases at both zero and full scale. The accuracy of the O_2 analyzers is to be within $\pm 0.1\%$ by volume. The accuracy of the CO_2 analyzers is to be within $\pm 0.25\%$ by volume.

15.7 Precaution for Low Level of O₂

15.7.1

The following spaces are to be provided with permanently installed equipment for monitoring O_2 content and be capable of alarming when the O_2 level is low:

15.7.1(a) All normally accessible spaces adjacent to spaces under controlled atmosphere.

15.7.1(b) Cargo spaces not under controlled atmosphere adjacent to spaces under controlled atmosphere and spaces where gas leakage may create an oxygen deficient atmosphere, e.g., spaces containing scrubber units or gas piping.

15.7.1(c) Cargo spaces which contain containers under controlled atmosphere.

15.7.1(d) Ship compartments or containers housing gas generating equipment.

15.7.2

An automatic pre-discharge warning alarm is to be fitted in each space under controlled atmosphere. The alarm is to be arranged to give audible signals continuously for 60 seconds before the gas discharge into that space commences. The alarm may be connected with the O_2 analyzer in a manner that it does not sound if the oxygen level in the space is below 14% by volume.

15.9 Monitoring and Alarm

The conditions as per 6-2-12/Table 1 are to be individually alarmed at the manned station for the spaces specified in 6-2-10/3.

17 Electrical

17.1 General

Except as noted herein, compliance with Section 6-2-9 is required.

17.3 Power Supply

17.3.1

Aggregate capacity of the electrical generators is to be sufficient to simultaneously supply the power to the entire controlled atmosphere system and the refrigerating system referred to in 6-2-9/7.1.

17.3.2

With any one generator out of action, the remaining generator(s) is to be capable of supplying the power to the controlled atmosphere system, excluding standby units, and the refrigerating system referred to in 6-2-9/7.3.

17.3.3

The power for the controlled atmosphere system is to be supplied from the main switchboard by feeders separate from those for other systems.

17.3.4

As an alternative to 6-2-12/17.3.2, an independent generating set providing power for the controlled atmosphere system may be accepted, provided arrangements are made to connect the controlled atmosphere system to the ship service generators, which are to have adequate total capacity to simultaneously carry the rated load of the controlled atmosphere system and the services essential for the propulsion and safety of the ship, services for providing minimum comfortable conditions of habitability and the entire refrigerating system.

17.5 Cable Penetration

Cable penetrating the boundaries of the gas generator compartment and spaces under controlled atmosphere are to be arranged gastight by use of cable glands.

19 Ethylene and Carbon Dioxide Scrubbers

19.1

Permanently installed piping complying with Part 4, Chapter 6 is to be provided between the scrubber units and the cargo spaces under controlled atmosphere.

19.3

The piping referred to in 6-2-12/19.1 is to be in accordance with 6-2-12/9.1.4 and 6-2-12/9.1.5.

19.5

Positive closing isolation valves are to be fitted at the connections with the cargo spaces under controlled atmosphere.

19.7

Exhausts from the scrubber units are to be led to a safe location in the weather, at least 2 m (6.5 ft) above the open deck and 5 m (16.5 ft) away from air inlets and openings to accommodation spaces, machinery spaces and other similar manned spaces.

21 Humidification Equipment

Where the cargo space under controlled atmosphere is equipped with a humidification system to control relative humidity of the space, the humidification system is to be in accordance with the following requirements:

21.1

For general guidance, the humidification system is to be capable of increasing the relative humidity in each of the intended cargo spaces up to a level of 90% at the specified space temperatures and maintain the selected level constant within $\pm 5\%$.

21.3

The humidification system lines in the refrigerated cargo spaces are to be installed to facilitate ease of drainage and are to be provided with suitable heating arrangements, as applicable.

21.5

Permanently installed equipment for monitoring relative humidity in the cargo spaces is to be provided.

21.7

The deviation of relative humidity from the predetermined set point in each cargo space is to be individually alarmed at the monitoring station.

23 Personnel Safety Equipment

23.1

Means are to be provided to re-oxygenate the cargo spaces and compartments prior to gaining entry into the spaces which were under controlled atmosphere conditions. Until the O_2 levels which are considered safe for entry have been achieved, entry into such spaces is to be prevented.

23.3

At least ten portable oxygen monitors with alarms are to be provided onboard.

23.5

At least one portable gas analyzer capable of measuring O_2 levels in the atmosphere is to be provided onboard for use prior to entry into the spaces under controlled atmosphere. This portable gas analyzer is in addition to the equipment required in 6-2-12/15.3.6.

23.7

A means of two-way communication is to be provided between the cargo spaces under controlled atmosphere and the nitrogen release control station. If portable radiotelephone apparatus are adopted to comply with this requirement, at least three sets are to be provided onboard. This equipment is in addition to the equipment required by SOLAS Chapter III, Regulation 6.

23.9

One set of oxygen resuscitation equipment is to be provided onboard.

23.11

Two self contained breathing apparatus equipped with built in radio communication and lifeline with a belt are to be provided onboard together with fully charged spare air bottles with a total free air capacity of 3600 liter (950 US gallons) for each breathing apparatus. This equipment is in addition to the equipment required by SOLAS Chapter II-2, Regulation 17.

25 **Operations, Equipment and Procedures Manual**

An Operations, Equipment and Procedures Manual is to be available onboard. The manual is to provide the following information:

25.1

General information about controlled atmospheres including explanation such as what is controlled atmosphere, need for controlled atmosphere, method of controlling atmosphere composition, danger associated with oxygen depleted atmosphere, insidious leakage of gas, etc.

25.3

Complete description of the ship's controlled atmosphere installation and diagrammatic arrangements showing the details of the gas tight compartments.

25.5

Procedures for gas freeing of Controlled Atmosphere (CA) spaces, methods of ascertaining adequacy of oxygen prior to entry, methods of communication in CA spaces.

25.7

Procedures for entering the CA spaces after gas freeing.

25.9

Procedures for loading adjacent cargo spaces.

25.11

Procedures prior to starting controlled atmosphere equipment.

25.13

Procedures for opening shut-off valves on nitrogen distribution branch lines and attachment of nitrogen distribution hoses, where applicable.

25.15

Procedures for functional testing portable gas generating unit each time it is placed onboard.

25.17

Procedures during the voyage with controlled atmosphere.

25.19

Equipment maintenance procedures and list of spare parts.

25.21

Operation, maintenance and calibration instructions for all types of gas detecting, analyzing and alarming equipment onboard associated with controlled atmosphere system.

25.23

Emergency procedures related to erroneous instrumentation.

25.25

Emergency procedures related to personnel overcome by oxygen deficiency.

25.27

Emergency procedures related to entry using breathing apparatus.

25.29

Instructions for atmosphere testing and gas freeing of spaces without permanent ventilation.

27 Tests and Inspections

27.1

Compressor parts subject to elevated pressure are to be hydrostatically tested at the manufacturer's plant in the presence of the Bureau Surveyors to 1.5 times their respective design pressure.

27.3

After completion, functional and capacity testing of the nitrogen generator is to be carried out at the manufacturer's plant in the presence of the Surveyor in accordance with an approved program. The functional tests should include testing of alarms, shut downs and pressure relief devices. Capacity and quality of the nitrogen produced may alternatively be verified onboard, in the presence of the Surveyor.

27.5

Air leakage test for cargo spaces are to be witnessed by the attending Surveyor.

27.7

Sample lines are to be tested in the presence of the attending Surveyor for leakage and blockage.

27.9

The setting of the PV valves is to be verified by the attending Surveyor.

27.11

The accuracy of the levels of O_2 and CO_2 in all spaces under controlled atmosphere is to be verified by the attending Surveyor in accordance with 6-2-12/15.1.2.

27.13

Accuracy of the O_2 analyzers and CO_2 analyzers is to be verified by the attending Surveyor in accordance with 6-2-12/15.5.3.

27.15

Low level alarm of O_2 and automatic nitrogen pre-discharge warning alarm are to be demonstrated in accordance with 6-2-12/15.7.

27.17

The required alarms and displays are to be verified for satisfactory operation at the predefined set points.

27.19

The requirements in 6-2-9/13 are to be complied with, as applicable.

	Item	Display	Alarm	Remarks
Compressor	Automatic stop		Activated	
	Lubricating oil	Pressure	Low	Automatic stop (Low pressure)
	Discharge line – Pressure	Pressure	High	Automatic stop (High pressure)
	Suction line – Pressure	Pressure	Low	
	Spaces under controlled atmosphere	Content	Deviation from set point	6-2-12/15.1.3
	Accessible spaces/cargo spaces adjacent to spaces under C.A.	Content	Low	6-2-12/15.7.1(a) and 6-2-12/15.7.1(b)
	Gas generating compartments	Content	Low	6-2-12/15.7.1(d)
O_2 Content	Gas generating container	Content	Low	6-2-12/15.7.1(d)
	Cargo spaces containing containers under controlled atmosphere	Content	Low	6-2-12/15.7.1(c)
	Accessible spaces containing scrubber units and gas piping	Content	Low	6-2-12/15.7.1(b)
CO ₂ Content	Space under controlled atmosphere	Content	Deviation from set point	
Gas Measuring System	Failure		Failure	
	Accuracy		Out of range	
Humidification System	Relative humidity	Relative humidity	Deviation from set point	If humidification system is fitted

TABLE 1 Instrumentation and Alarms

This Page Intentionally Left Blank

PART

6

CHAPTER 2 Vessels Intended to Carry Refrigerated Cargoes

SECTION 13 Refrigerated Cargo Container Carrier

1 General

1.1

Insulated containers are not considered part of the classed installation. However, for installations where the containers are supplied with cooled air from the vessel's refrigeration system, in accordance with 6-2-1/7.1.3 and 6-2-1/7.1.4, the requirements of this Section will apply.

1.3

Where requested, insulated containers will be certified in accordance with the *Rules for Certification* of Cargo Containers.

3 Porthole Refrigerated Cargo Container Carrier

3.1 Design Considerations

3.1.1

The vessel's refrigeration system is to be designed, constructed and installed in accordance with the requirements of this Section and other applicable requirements.

3.1.2

Where cargo cells are to be insulated, the arrangements are to be in accordance with the applicable requirements of Section 6-2-5.

3.1.3

Space heating of the cargo cells will be subject to special consideration.

3.1.4

The air circulation and fresh air ventilation system serving the containers is to be based upon the air volume of each empty container connected to the system. Air circulation for each connected container is to be 50 to 70 air changes per hour for fruit cargoes and 30 to 40 air changes per hour for frozen cargoes.

3.1.5

Fresh air ventilation for each container is to be at least two (2) air changes per hour.

3.1.6

Means are to be provided for monitoring CO₂ levels in each air cooler battery.

3.3 Ducts and Couplings

3.3.1

Ducts, couplings and air cooler casings are to be airtight, as established by tests conducted in accordance with 6-2-13/7.

3.3.2

Where a container stack is supplied with cooled air from its own air cooler, the air flow to each connected container is to be within $\pm 5\%$ of the design value.

3.3.3

Insulation installed on the inside of ducts is to be of a type that is not affected by moisture and is resistant to abrasion. The properties required by 6-2-5/5.11 are also applicable.

3.3.4

Where couplings are pneumatically actuated, the compressed air piping, valves and fittings are to be in accordance with Part 4, Chapter 6 and are to be protected against freezing.

3.3.5

The compressed air system referred to in 6-2-13/3.3.4 is to incorporate moisture traps to ensure the air supply is sufficiently dry to prevent ice formation when cargo cell temperatures are below 0°C (32° F).

3.3.6

In order to protect against icing, the outer surface of the coupling connections is to be insulated.

3.5 Air Coolers

When the total internal volume of all containers connected to a single air cooler exceeds 300 m^3 (10,593 ft³), the air cooler coils are to be divided into at least two independent sections such that any one of them may be isolated without affecting the operation of the other. Alternatively, at least two independent air coolers are to be fitted.

3.7 Instrumentation, Control and Monitoring

Except as noted herein, refrigerating machinery plants and machinery spaces are to comply with the requirements in Section 6-2-10.

3.7.1 Temperature Monitoring

3.7.1(a) Delivery and return air ducts for each container are to be fitted with a thermometer. Where a group of containers is being served by one air cooler with common fans, the individual thermometers may be replaced by common thermometers for the delivery air.

3.7.1(b) Remote temperature monitoring of delivery and return air ducts is to comply with the requirements of 6-2-10/5.5.2, 6-2-10/5.5.3 and 6-2-10/5.7, except that the sensors in the delivery air ducts need not be connected to separate measuring instruments if the delivery air temperature is monitored locally.

3.7.1(c) The sensors are to be permanently connected to their instruments and protected against damage.

3.7.2 Monitoring

The display and alarms are to be provided in accordance with 6-2-13/Table 1 at the locations specified in 6-2-10/3.

TABLE 1 Instrumentation and Alarms

Item	Display	Alarm
Return air / Delivery air Temperature	Temperature	Deviation from set point
CO ₂ Level in each Air Cooler Battery	Content	High

3.9 Electrical

The requirements in Section 6-2-9 are applicable.

3.11 Automatic Control

Where automatic control is provided for refrigerating machinery, compliance with 6-2-10/15, as applicable, is required.

5 Integral Refrigerated Cargo Container Carrier

5.1 Design Considerations

5.1.1

Where water-cooled condensers are provided, the cooling water flow rate is to be between 11 and 26 liters per minute.

5.1.2

Cooling water systems are to be in accordance with Section 6-2-7, as applicable.

5.1.3

Cargo cells containing containers are to be provided with sufficient air freshening capability to dissipate metabolic gas and also to ensure that the cell temperature does not exceed 10° C (18°F) above ambient while operating under the conditions specified in 6-2-6/3.3.1.

5.1.4

Where refrigerated cargo containers are carried in open hatch or hatchless cargo holds of a container vessel, the ventilation, bilge, hold temperature, etc. will be subject of special consideration.

Part6Optional Items and SystemsChapter2Vessels Intended to Carry Refrigerated CargoesSection13Refrigerated Cargo Container Carrier

6-2-13

5.3 Instrumentation, Control and Monitoring

Monitoring in accordance with the following 6-2-13/Table 2 is to be provided at a location specified in 6-2-10/3.

TABLE 2				
Instrumentation and Displays				

Item	Display	
Power Supply (Monitoring)	Status	
Compressor Running	Running	
Defrost	Activate	
Temperature in range	Temperature	

5.5 Electrical

5.5.1

The requirements in Section 6-2-9 and the following are to be complied with.

5.5.2

Receptacles and plugs of different electrical ratings are not to be interchangeable. They are to be in accordance with ISO standard 1496-2 or equipment compatible with ISO standard.

5.7 Automatic Control

Where an automatic control system is provided, compliance with 6-2-10/15 is required.

7 Tests and Inspections

7.1 Porthole Refrigerated Cargo Container Carrier

7.1.1

Measurements are to be carried out in the presence of the attending Surveyor during on-board trials to demonstrate the air circulation and ventilation rates are as per 6-2-13/3.1.4 and 6-2-13/3.1.5.

7.1.2

The air tightness required by 6-2-13/3.3.1 is considered satisfactory when the leakage rate does not exceed 0.5% of the total volumetric flow rate at the design pressure. Tests to establish compliance are to be conducted on the installed system in the presence of the attending Surveyor.

7.1.3

Tests to establish that the cooled air distribution is in compliance with 6-2-13/3.3.2 are to be conducted on the installed system in the presence of the attending Surveyor.

7.1.4

Compressed air lines connected to the coupling actuators referred to in 6-2-13/3.3.4 are to be tested to 1.5 times the design pressure.

7.1.5

The electrical test requirements in 6-2-9/13 are to be complied with.

7.1.6

The alarms and displays required by 6-2-13/3.7 are to be verified for satisfactory operation at pre-defined set points.

7.1.7

In order to simplify shipboard testing, each type of air ducting system with couplings, an air cooler and circulating fans which are completely assembled at the manufacturer's plant may be tested prior to installation onboard in accordance with the following requirements:

7.1.7(a) The test is to be performed in accordance with an approved test program in the presence of the Surveyor.

7.1.7(b) The k-values for the duct and cargo cells are to be established as per the requirements of 6-2-16/3.3.3.

7.1.7(c) Air leakage rate for the air distribution duct, couplings and air cooler casings is to be measured.

7.1.7(d) Air distribution in the air ducting system for a stack of containers is to be measured.

7.1.7(e) Air circulating fans are to be tested in accordance with 6-2-16/3.1.1.

7.3 Integral Refrigerated Cargo Container Carrier

7.3.1

The design values required for compliance with 6-2-13/5.1.3 are to be shown on the ventilation fan capacity curve and, by performing on-board trials in the presence of the attending Surveyor, the capacity curve is to be verified at the prevailing ambient conditions.

7.3.2

The electrical test requirements in 6-2-9/13 are to be complied with.

7.3.3

The alarms and displays, where fitted for compliance with 6-2-13/5.3, are to be verified for satisfactory operation at the pre-defined set points.

7.3.4

Cooling water flow rate to the condensers is to be measured for compliance with 6-2-16/1.13.

7.3.5

Air freshening ventilation fans for cargo cells are to be tested in accordance with applicable requirements in 6-2-16/3.1.1.

This Page Intentionally Left Blank

6

CHAPTER 2 Vessels Intended to Carry Refrigerated Cargoes

SECTION 14 Refrigerated Edible Bulk Liquid Tanker

Note: Text in *italics* is considered necessary as conditions of classification (i.e., compulsory requirements). (See 6-2-1/5.3.)

1 General

1.1

The requirements of this Section are applicable to vessels defined in 6-2-1/13.25 requiring the notation referred to in 6-2-1/7.1.5 for the carriage of refrigerated edible bulk liquids.

1.3

Unless otherwise stated in this Section, the requirements of these Rules are applicable.

1.5

Due regard is to be given to the requirements of the Flag State and the Port State for the carriage and transportation of edible products.

3 Design Considerations

The material used is to be in accordance with the requirements of Part 2 and the following:

3.1

Materials used for the construction of the cargo containment, the associated piping, pumps and valves are to be suitable to withstand the design service temperatures, pressures and are to be compatible with the products carried. Materials incompatible with the edible products being carried are not to be used. Details of the materials are to be submitted for review.

3.3

The use of non-metallic materials for the cargo piping system will be the subject of special consideration. Accordingly, relevant details are to be submitted for review.

5 Hull Structure

For design and construction of the hull structure, refer to Part 3.

7 Cargo Containment System

7.1 Cargo Tanks

7.1.1

Cargo tanks, both independent and integral, are to be designed and constructed in accordance with the applicable requirements in Part 3. Integral tanks are also to comply with the requirements for integral tanks on chemical carriers in 5C-9-4/1.1 and 5C-9-4/1.3.

7.1.2

Independent pressurized tanks referred to in 6-2-1/13.27.4 are to be designed and constructed in accordance with Part 4, Chapter 4, as applicable.

7.1.3

The supports for the independent cargo tank(s) are to be designed in accordance with the requirements of a recognized national or international pressure vessel design code to withstand the static and dynamic loads with liquid full cargo tanks.

7.1.4

The independent cargo tanks are to be fitted with anti-flotation devices, as necessary. The loads on the anti-flotation devices are to assume cargo tanks empty and the hold spaces flooded.

7.1.5

Where the cargo tanks are located in hold spaces, the void spaces are to be made accessible to enable inspection and examination of the containment pressure boundaries and insulation (if fitted).

7.3 Cargo Tank Protection

7.3.1

Cargo tanks are to be fitted with pressure/vacuum valves, as applicable, to prevent over- or underpressurization. The discharges from the valves from a cargo tank may be led to another cargo tank, provided the cargo tanks are independent of each other and it is not possible to pressurize or vacuum all the tanks simultaneously through a common system. Alternatively, the discharge from the cargo tank valves may be led to the hold bilges.

7.3.2

The setting of the cargo tank pressure/vacuum valve(s) is to be in accordance with 5C-1-7/11.11.2 and 5C-8-1/1.7.1 and the arrangement is to be such that the valve(s) remain connected directly to the cargo tanks at all times, except during maintenance and repair.

7.3.3

For cargo tanks fitted with inerting facilities, see 6-2-14/9.5.2.

9 Cargo Loading and Unloading System

9.1 Cargo Piping

9.1.1

A permanently installed cargo loading and unloading system is to be fitted. There are to be a minimum of two pumps capable of taking suction from each cargo tank. Where submersible pumps are used, only one cargo pump per tank may be used, provided that an alternative method of pumping cargo is available onboard the vessel. This alternative method may be by means of pressurizing the cargo tanks.

9.1.2

Means are to be provided for isolation of each cargo tank in the loading and unloading lines.

9.1.3

Pipes, valves and the fittings in the cargo system are to comply with the requirements of Part 4, Chapter 6.

9.1.4

Cargo loading and unloading lines are to be protected against over pressurization by pressure relief valves. The discharge from the relief valves may be led to the cargo tanks.

9.3 Cargo Pumps

Where the cargo unloading is through cargo pumps other than submersible pumps, they are to be accessible for maintenance and repair.

9.5 Inert Gas System

Where cargo tanks are provided with facilities to supply inert gas into the vapor spaces, the arrangements are to be in accordance with the following requirements:

9.5.1

The location of the inert gas generating plant or the storage of the reserve inert gas is subject to approval by the Bureau.

9.5.2

The cargo tanks are to be fitted with pressure/vacuum valves to ensure against overor underpressurization. The outlets from the pressure/vacuum valves are to be situated at least 5 m (16.5 ft.) from any openings and air intakes to the accommodation and service spaces.

11 Refrigeration System

11.1

The refrigeration machinery is to comply with the requirements of Section 6-2-6, as applicable.

11.3

Where a direct expansion system is used whereby the refrigerant is circulated through the cooling coils in the cargo tanks, the design of the coils are to be such as to ensure that there is no possibility of leakage of the refrigerant into the cargo. Details in this regard are to be submitted for review.

11.5

Where an indirect expansion system is used, the secondary coolant must not be detrimental to the cargo.

13 Ancillary Systems

13.1 Cargo Tank Sounding Arrangements

Cargo tanks are to be provided with means for assessing the liquid levels in the tanks. The system may be a permanently fixed or a temporary arrangement.

13.3 Cargo Tank Ventilation

Means for ventilating the cargo tanks during loading and unloading is to be fitted. For tanks supplied with inert gas, refer to 6-2-14/9.5.

13.5 Hold Space Bilge Arrangement

13.5.1

A permanently fixed bilge system is to be provided for emptying out the hold space bilges. This system need not be independent of the Bilge system required by Part 4, Chapter 6.

13.5.2

Where the discharge from the cargo tank relief values is led to the hold bilges, a bilge high level alarm is to be fitted to give an audible and visual alarm in the engine room or the bridge.

13.7 Hold Space Ventilation Arrangements

The hold spaces are to be provided with adequate ventilation, where applicable.

15 Tests and Inspections

15.1

Tests and inspections of the refrigerating machinery and associated systems are to be in accordance with 6-2-6/25, as applicable.

15.3

Tests and inspection of the vessel and its machinery, other than the refrigeration machinery, are to be in accordance with applicable Sections of the Rules.

6

CHAPTER 2 Vessels Intended to Carry Refrigerated Cargoes

SECTION 15 Refrigerated Fish Carrier

1 General

1.1

The requirements of this section are applicable to fishing vessels defined in 6-2-1/13.29 requiring the notation referred to in 6-2-1/7.1.6.

1.3

Unless otherwise stated in this Section, these Rules and Part 5, Chapter 14 of the Rules for Building and Classing Steel Vessels Under 90 meters (295 feet) in Length are applicable.

1.5

Due regard is to be given to the requirements of the Flag State and Port State for the carriage and transportation of edible products.

3 Design Considerations

For design considerations, reference is to be made to the applicable requirements of this Chapter.

5 Materials

Generally, the materials used are to be in accordance with the requirements of Part 2 and the applicable sections of this Chapter.

7 Hull Structures

7.1

For design and construction of the hull structure, refer to the applicable parts of these Rules and the *Rules for Building and Classing Steel Vessels Under 90 meters (295 feet) in Length*, as applicable.

7.3

Where fishing vessels are moored against the mother vessels during unloading at sea, fenders or other similar means for the protection of the shell plating may be required. Where such an arrangement is fitted, the shell plating in way of the protection is to be adequately strengthened.

9 Refrigerated Cargo Spaces

9.1

The refrigerated spaces are to comply with the applicable requirements of Section 6-2-5.

9.3

Equipment and fittings such as electric lights, etc. are to be suitably protected to prevent damage during loading and unloading of cargo.

11 Refrigeration System

11.1

The refrigeration machinery is to comply with the requirements of Section 6-2-6, as applicable.

11.3

Where an ammonia refrigeration system is used, reference is to be made to 6-2-11/1.5.

13 Refrigerated Sea Water Tanks (RSW Tank)

13.1

Each RSW tank is to be provided with appropriate venting and sounding arrangements. The arrangements to assess the liquid levels in the tanks may be permanently installed or a temporary arrangement.

13.3

Where cooling coils are used in the tanks using ammonia as the refrigerant, refer to the requirements of 6-2-15/11.3.

13.5

Where an RSW tank is intended to carry dry fish in bulk, in addition to the requirements for refrigerated spaces, the following arrangements are to be provided:

13.5.1

The tank is to be provided with a bilge well and a permanent connection to the bilge system, unless the tanks are provided with independent bilge systems.

13.5.2

Arrangements are to be made for blanking off sea water piping.

15 Plate Freezers

15.1

Insulation and piping in plate freezers is to be protected from moveable parts of the system.

15.3

Flexible hoses in the system are to be of the armored type suitable for the services intended.

15.5

Piping, including flexible hoses, is to comply with the requirements of 6-2-15/11.1 and 6-2-15/11.3.

17 Tests and Inspections

17.1

The tests and inspections of the refrigeration machinery and associated system is to be in accordance with 6-2-6/25, as applicable.

17.3

Tests and inspection of the vessel and its machinery, other than the refrigeration machinery, are to be in accordance with the applicable Sections of these Rules or the *Rules for Building and Classing Steel Vessels Under 90 meters (295 feet) in Length*, as applicable.

This Page Intentionally Left Blank

6

CHAPTER 2 Vessels Intended to Carry Refrigerated Cargoes

SECTION 16 Testing

1 On Board Tests After Installation – (Commissioning)

1.1 Piping

1.1.1

All refrigerant and brine piping welded joints are to be hydrostatically tested to a pressure of 1.5 times the respective design pressure. Alternatively, 100 percent nondestructive radiographic or ultrasonic testing of the welded joints may be carried out.

1.1.2

After completion of tests required in 6-2-16/1.1.1, and being completely installed and assembled, but before the application of the insulation, a leak test is to be carried out on the refrigerant and brine systems by use of nitrogen or other suitable gases at pressures not less than the design pressures of the respective systems.

Where defrosting is intended by hot refrigerant gas, the design pressure for the leak test on the low pressure side is to be the same as the high pressure side.

1.1.3

The leak test may be carried out using following methods:

1.1.3(a) By submerging the refrigerant and brine piping and equipment and applying the pressure referred to in 6-2-16/1.1.2.

1.1.3(b) By building up an initial pressure of 0.5 to 1.0 bar (0.5 to 1.0 kgf/cm², 7 to 14 psi) in the refrigerant and brine piping systems and checking for leaks at the pressure by either soapy water test, tracer, or detectors. If no leaks are detected or leaks found are dealt with satisfactorily, the pressure is to be increased gradually to the respective design pressures of the systems. The pressure is to be maintained for a predetermined period and pressures deviations are to be recorded.

1.1.3(c) Other alternative, effective methods similar to those described above, subject to the satisfaction of the attending Surveyor.

1.1.4

Following completion of the above-mentioned tests, the refrigerant piping systems are to be flushed with dry nitrogen to ensure dryness and cleanliness.

1.3

Before charging with refrigerant, the entire refrigeration system is to be evacuated using vacuum pumps.

1.5

After completing the pressure tests above, all refrigerant and brine pipes are to be examined under working pressure.

1.7

The refrigeration plant is to be operated to demonstrate its ability to modulate the refrigeration capacity in single and multiple compressor operation with all possible variations in the cross over connections that can be made with compressors, condensers and evaporators.

1.9

Verify operation of thermostats, solenoid valves, expansion valves, bypass valves, evaporator brine line valves and condenser water regulators and other such similar devices.

1.11

Plant safety valves and other similar safety devices are to be verified for satisfactory operation.

1.13

Cooling water flow rates through the condenser are to be measured to determine that the velocities do not exceed the maximum design values while operating with the main cooling water pump and then the standby pumps.

1.15

The satisfactory operation of the automatic or manual oil refrigerant separation system is to be verified to ensure that separated oil is returned to the compressors such that the oil levels between the compressors are balanced.

1.17

After initial start up, the refrigeration monitoring system and the automatic control system, where fitted, is to be verified for satisfactory operation.

1.19

Effective operation of the refrigerant leakage detection system is to be demonstrated.

3 Performance Test

3.1 Air Circulation and Fresh Air Ventilation

3.1.1

All fans for air circulation and fresh air ventilation of cargo spaces are to be tested at the full rated speeds of volumetric flow rates referred to in 6-2-5/9. The testing is to include measurements of pressure difference across the fans and power consumption. The anemometer or other similar measuring devices may be situated on the suction side of the cargo hold. These measuring devices are to be calibrated to the satisfaction of the attending Surveyor.

3.1.2

The air circulation distribution pattern in the refrigerated cargo spaces is to be checked.

3.1.3

The air distribution measurement referred to in 6-2-16/3.1.2 is to be carried out to verify the design values specified by the manufacturers and to ensure that there are no areas of insufficient air flow.

3.3 Refrigeration Machinery and Insulation Test

3.3.1 General

The following refrigeration machinery and insulation tests are to verify that the plant has sufficient refrigeration capacity as required by 6-2-6/3.3 relative to the insulation and other heat loads to achieve and maintain the minimum design temperature, which will be the basis of the notations referred to in 6-2-1/7.

3.3.2 Pull Down Test

Upon completion of the commissioning test referred to in 6-2-16/1, all openings to the cargo spaces including the air freshening vents are to be closed.

The refrigerated cargo hold spaces are to be warmed up to ambient atmospheric temperature by means of running air circulation fans and brine pumps, if fitted.

The refrigeration plant is to be started and run at full capacity under automatic control using all compressors and set at maximum design condensing temperature. The refrigeration machinery should continue to run until the minimum design temperature in all cargo spaces has been achieved. The operation of the refrigeration machinery is to be monitored to ensure satisfactory operation within design parameters.

3.3.3 Heat Balance Test

Upon achieving the minimum design temperature of the refrigerated spaces, after the test specified in 6-2-16/3.3.2, a heat balance test is to be initiated by switching one compressor to manual and remainder switched off and allowing the temperature to stabilize at approximately the minimum design temperature or at least minus 20°C (68°F) and held at these temperatures for a sufficient period of time, generally about 24 hours, to remove the residual heat in the insulation and achieve a balanced condition.

The condition is considered to be balanced when the mean temperature in the refrigerated cargo space does not vary by more than ± 0.5 °C (± 1 °F) in each hour. The balanced condition should be planned to be achieved during the time of day when the outside temperature is as constant as possible. During the stabilization period, the collection of data is to be taken initially every six (6) hours and every hour for the last six (6) hours.

For this test, at least the following data are to be recorded:

3.3.3(a) The outside temperatures of the shell, bulkheads and decks enclosing the refrigerated cargo spaces.

- 3.3.3(b) The internal temperatures of the cargo spaces.
- 3.3.3(c) The suction and discharge pressure of the compressors.
- *3.3.3(d)* The actual voltage and amperage of the compressor electric motor.

3.3.3(e) Heat inputs to the refrigerated spaces from fan motors, lighting fixtures, heat tracing on drain pumps, etc.

3.3.3(f) The rate of cooling water flowing through the condensers.

3.3.3(g) The inlet and outlet temperatures of the condenser cooling water.

3.3.3(h) Upon achieving stabilized temperatures, calculations of the k values based on the heat balance test mentioned above are to be carried by the yard/builder and submitted to ABS for review. For these calculations, the air cooler overall heat transfer coefficient at the design conditions is to be taken equal to that measured during the heat balance test. Similarly, the condenser overall heat transfer coefficient at the stated maximum sea water temperature is to be taken equal to that measured during the heat balance test.

3.3.4 Refrigerated Port Hole Type

For container carriers described in 6-2-13/3, a full functional test of all refrigerated cargo spaces may not be required if an operational test equivalent to that described herein is performed onboard with at least one cell of containers installed and the following requirements are satisfied:

3.3.4(a) Cooling air to the containers is supplied exclusively by air ducts tested in accordance with 6-2-13/7.

3.3.4(b) The builder demonstrates by calculating, using data obtained during testing described above, to show that the refrigerating machinery has sufficient capacity.

3.3.4(c) It is to be demonstrated that the cell conditioning, if fitted, is sufficient to maintain the cell at a temperature which is in excess of the minimum design temperature of the structural steel.

3.3.5 Insulation Test

After the cargo spaces have been stabilized for the heat balance test in 6-2-16/3.3.3, the outside surfaces of the bulkheads, shell, decks, doors and other opening covers, as well as duct, pipe and cable penetrations are to be checked for excessive condensation or frost indicative of voids and thermal bridges in the insulation.

3.3.6 Temperature Rise Test

For the temperature rise test, the refrigerating machinery is to be stopped and all of the heat input sources shut off after stabilization, as in 6-2-16/3.3.3, and at least the following data are to be recorded once per hour over a six-hour period.

3.3.6(a) The outside temperature of the entire shell enclosing the refrigerated cargo space such as ambient, sea water, tanks, engine room.

3.3.6(b) The internal temperature of the cargo space:

- *i)* The test is to be performed at the time of the day when the outside temperature is as constant as possible.
- ii) The calculations of the k values is to be carried out by the yard/builder and submitted to the Bureau for review, together with a drawing showing precise locations and position of the values recorded for this test.

3.3.7 Defrosting Test

After satisfactory completion of the heat balance test and temperature rise test, the cooler batteries are to be defrosted to demonstrate the ability to completely defrost. The Surveyor to verify that the system for removing defrost water is operating satisfactorily.

3.3.8 Multiple Compartment Temperature Test

Where the design parameter specified requires multiple temperature configurations, a test is to be carried out to demonstrate this capability for the refrigerated spaces.

3.3.9 Heating Capacity Test

Where the design parameter specified requires a heating capacity to be available for the refrigerated compartments, a test is to be carried out to demonstrate the capability of the heating system.

3.3.10 Automatic Control System

Where automatic control systems are fitted, the tests referred to under 6-2-16/3.3.2, 6-2-16/3.3.6, 6-2-16/3.3.7 and 6-2-16/3.3.8 are to be conducted utilizing the control system.

This Page Intentionally Left Blank